首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
知网是一个英汉双语本体,含有丰富的语义知识.在综合考虑了知网中义原重合度、义原差度、层次深度等因素的基础上,提出了一种新颖的义原相似度计算方法,并在义原相似度计算的基础上,通过改进的匈牙利算法来计算基于知网的概念相似度,最后通过实验验证算法的有效性,与基于WordNet的方法相比,文中提出的基于知网的相似度计算一样可以取得较好的精确度.  相似文献   

2.
一种基于义原重合度的词语相似度计算   总被引:1,自引:0,他引:1  
通过分析知网中的义原关系,认为在同一棵树中两个相等距离的义原,公共节点对相似度大小起着决定性作用;距离根节点越远,分类越细致,描述的信息越详细;它们的相似度也就越大.提出了一种基于知网的相似度的计算方法,定义了知网义原间的相似度公式.实验表明,利用本文方法计算词语相似度,所得结果在一定程度上更加与人的直观相符.  相似文献   

3.
基于语义相似度的文本表示降维方法   总被引:1,自引:1,他引:1  
数据降维是文本表示中不可或缺的一个环节,有效的数据降维方法不仅能够减少计算量,同时有助于文本处理精度的提高.不同于传统的利用统计信息进行降维的方法,本文提出了一种基于词汇的语义相似度的文本表示的降维方法,该方法结合自然语言处理的知识,在降维环节考虑了特征词的语义信息和词性信息.实验结果表明:该方法能够有效地降低文本表示的维数,并在降维后的空间获得较高的文本处理精度,基于语义相似度的降维方法是一种适合文本处理的降维方法.  相似文献   

4.
基于马尔科夫模型的词汇语义相似度计算   总被引:1,自引:0,他引:1  
在《知网2002》的基础上,充分利用其层次结构,引入了马尔科夫模型来计算词汇语义相似度,实验证明,算法取得较理想的实验结果.  相似文献   

5.
语义相似度计算是自然语言处理中的一个关键过程,在机器翻译、自动问答、句法分析、词义排歧等领域都有着广泛的应用.列举并分析了几种典型的基于知网的相似度计算方法,并提出一种改进的基于知网的相似度计算方法,实验结果表明该方法是有效的.  相似文献   

6.
基于《知网》的词语相似度计算研究   总被引:2,自引:0,他引:2  
词语之间相似度的计算通常有基于统计和基于世界知识2种方法.中文词语相似度的计算,可以通过计算义原的相似度进而计算词语的相似度,在此基础之上深入分析《知网》的义原层次体系,提出了一种将义原在层次体系树上的深度和区域密度2个因素添加到义原相似度计算中的方法.通过实验发现,考虑义原在层次体系树上的深度和区域密度得到的结果比不考虑这2个因素得到结果更符合实际.  相似文献   

7.
基于语义理解的文本相似度算法   总被引:26,自引:0,他引:26  
相似度的计算在信息检索及文档复制检测等领域具有广泛的应用前景.研究了文本相似度的计算方法,在知网语义相似度的基础上,将基于语义理解的文本相似度计算推广到段落范围,进而可以将这种段落相似度推广到篇章相似度计算.给出了文本(包括词语、句子、段落)相似度的计算公式及算法,用于计算两文本之间的相似度.实例验证表明,该算法与现有典型的相似度计算方法相比,计算准确性得到提高.  相似文献   

8.
一种基于知网的词汇语义相似度改进计算方法   总被引:4,自引:0,他引:4  
汉语词语语义相似度计算是中文信息处理中的一个关键问题.在知网(HowNet)环境下,通过分析影响词汇相似度计算结果的概念层次树结构,提出了一种同时考虑层次树深度、密度及语义路径等多因素的义元相似度计算方法,并应用于词汇相似度计算过程.实验结果表明,该方法使词汇相似度计算结果更趋于合理,绝大部分结果更符合人们的日常体验,有效提高了词汇相似度计算结果的精确度和准确性.  相似文献   

9.
词语之间相似度的计算广泛应用于信息检索、文本主题抽取、文本分类、机器翻译等研究领域.词语之间的相似度的计算通常有两方法,基于统计的方法和基于世界知识的方法.对于中文的词语相似度计算,有人提出一种利用《知网》计算词语相似度的方法,该方法通过计算《知网》义原的相似度进而计算词语的相似度,但是该方法在计算义原相似度时没有考虑义原在层次体系树上的深度以及区域密度.在此基础之上深入研究《知网》的义原层次体系,将义原在层次体系树上的深度和区域密度两个因素添加到义原相似度计算中.最后,实现了该计算方法并得到实验结果,将实验结果与改进前的计算方法的结果比较,发现考虑义原在层次体系树上的深度和区域密度得到的结果比不考虑这两个因素得到结果更符合实际.  相似文献   

10.
汉语词语语义相似度计算是中文信息处理中的一个关键问题。在知网(HowNet)环境下,通过分析影响词汇相似度计算结果的概念层次树结构,提出了一种同时考虑层次树深度、密度及语义路径等多因素的义元相似度计算方法,并应用于词汇相似度计算过程。实验结果表明,该方法使词汇相似度计算结果更趋于合理,绝大部分结果更符合人们的日常体验,有效提高了词汇相似度计算结果的精确度和准确性。  相似文献   

11.
一种改进的Lucene语义相似度检索算法   总被引:2,自引:0,他引:2  
 Lucene的基础上,结合检索词项的语义信息,利用外部词典Wordnet分析检索词项与被检索文档中词项的语义相似度,在此基础上实现对文档语义信息的检索。通过分析现有的相似度量函数的核心特征,选择合适的语义相似度量方法,提出了一种新的词项语义相似度检索函数,该函数能够对检索文档按照语义相似度进行排序。实验结果表明,所提出的方法能够有效地提升文献检索的准确度。  相似文献   

12.
李文超  杨妮妮 《科学技术与工程》2012,12(21):5328-5330,5336
为了在信息检索中,从语义层面全面理解用户查询意图,提高信息的查全率和查准率,提出了基于本体的语义相似性和相关性计算方法。该算法充分考虑了本体模型结构的特点和本体间语义距离、本体密集度等因素对语义相似性的影响,提高了信息检索性能。以煤炭矿井工程的知识体系为例,建立了本体库模型,并设计了本体库的树状内存数据结构。通过实验仿真计算验证了本体相似性算法的有效性。  相似文献   

13.
为解决传统的协同过滤算法不能准确理解用户的喜好,影响推荐准确率和推荐效果,提出基于社会化标签语义相似度的协同过滤算法.算法以标签语义相似度为基础,将项目资源和相关标签的语义信息纳入,显著提高了推荐系统的预测性能.研究结果表明:与以具体评分数据为基础的算法相比,该算法较好地解决了词相似度和句子相似度计算问题,推荐准确度和性能较以往的协同过滤算法有明显提高,改善了推荐效果.  相似文献   

14.
提出了一种中文问句语义相似度计算的新方法.该方法分为两步:第一步采用基于问句句型模板规则匹配的方法提取问句语义表征;第二步根据问句语义表征计算问句语义相似度.采用该方法开发了一个面向常问问题集(FAQ)的问答系统.实验结果表明,采用该方法获得的相似度计算的准确率约为85%.  相似文献   

15.
词汇极性分析在自然语言处理等多个领域发挥着重要的作用。针对现有汉语词汇极性分析对词汇的义原考虑的不够全面,使得极性分析存在不准确的问题,提出一种更有效的词汇语义倾向性计算方法。首先找准一组褒贬中性词库,进而提取出待测词与词库中基准词词汇的极性义原、词性、其他义原,计算相应的相似度;并分别给出合适的权重值。由此计算出待测词与基准词的相似度,最后判断待测词的语义极性。实验表明该算法可以进一步的提高语义极性倾向判别准确率。  相似文献   

16.
基于语义相似性的资源协同过滤技术研究   总被引:6,自引:0,他引:6  
为解决协同过滤推荐系统中所存在的可扩展性、稀疏性等问题带来的推荐性能下降,提出新的基于资源语义知识协同过滤算法,算法综合考虑了资源语义和用户评价的影响,改善基于资源协同过滤算法性能.实验表明,基于资源语义的协同过滤算法相对于传统协同过滤算法可提高推荐性能.  相似文献   

17.
随着网络上的本体越来越多,为了实现不同本体间的知识重用和共享,需要在本体间建立映射。而建立映射的关键在于找到概念相同或相近的实体对。借鉴计算语言学中的语义距离思想,提出了基于OWL构词所描述的本体概念相似度计算方法,该方法充分考虑了概念本身、概念属性、概念所处的层次结构和概念的OWL语义四个方面的语义相似度。  相似文献   

18.
为了计算形式概念分析的形式概念或概念格的语义相似度,利用描述逻辑概念作为形式背景的特征属性对形式概念分析的形式背景进行语义扩展,即利用领域本体(描述逻辑知识库)提出了形式背景的一种语义表示方法.在此基础上,基于形式背景的语义表示,利用描述逻辑推理(即本体推理)给出了一种面向形式概念分析的形式概念或概念格语义相似度计算框架,并且证明了实例化该架构所得到的语义相似度计算方法满足对称性和等价不变性等基本性质.  相似文献   

19.
针对搜索引擎领域存在的因查询条件模糊而严重影响信息检索性能的问题,提出了一种混合语义相似度优化模糊查询算法。首先,根据相似度计算概念提出了与其接近的新概念提取方法;然后,利用TF-IQF模型将链接划分成标记,并使用这些标记组成的集合表示出查询;最后,构建二分图识别出相关的查询,使用二分图计算出查询相似度。实验结果表明,相比点击文档、相关查询和反向查询三种算法,取得了更好的全查率、检索精度及F-度量。  相似文献   

20.
基于语义距离的领域本体概念相似度研究   总被引:2,自引:0,他引:2  
简要介绍了本体的概念及其分类,在提出的基于语义距离的领域本体概念相似度计算方法中,充分考虑了影响语义距离计算的四大因素,还考虑了概念相似度计算的非对称性,能够较真实地反映概念之间的语义关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号