首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
提出了一种非对称开槽贴片结构的双模谐振器,并在此基础上研究设计出了一种结构紧凑的微带双模带通滤波器,这种具有非对称开槽贴片的双模谐振器不仅具有双模谐振的特性,还能够有效减小电路的尺寸,便于实现双模带通滤波器的小型化.利用ADS仿真软件对设计出的双模带通滤波器进行仿真表明,该滤波器具有良好的通带特性,且整体尺寸为0.2λg×0.2λg,有效实现了双模带通滤波器的小型化.  相似文献   

2.
本文利用缺陷接地结构(DGS)设计了一种高性能的超宽带滤波器,该滤波器包括位于多模谐振器下面的六个半圆形的DGS.首先通过使用多模谐振原理得到一个超宽带带通滤波器,然后利用DGS结构设计了一个截止频率超过12.6GHz的低通滤波器,这样做的目的是抑制超宽带滤波器的寄生通带的影响.最后结合两者,得到一高性能种超宽带带通滤波器,使用ANSOFT HFSS软件建模仿真和优化,结果表明:该滤波器的中心频率在6.85 GHz,通带为3.0 GHz-10.6 GHz,通带内插入损耗小于0.3 dB,回波损耗优于20 dB.频带内具有良好的通带特性,同时又能有效的抑制高次谐波,上阻带在30 dB以下达到19 GHz.  相似文献   

3.
基片集成波导技术使得包括平面电路、接头和矩形波导在内的完整电路可以以平面的形式集成在标准印刷电路板上;论文首次将金属条带式波导平面电路带通滤波器的设计方法引入基片集成波导之中,发展了基片集成波导带通滤波器的设计;文中提供了一个设计实例,Ansoft HFSS的数值仿真结果显示该途径是行之有效的。  相似文献   

4.
利用加载T型枝节的单元开环双模谐振器的双模频率特性,设计了一种新型的双模双带滤波器.该滤波器具有多个传输零点,显著提高了通带的选择性和阻带特性,且滤波器的2个通带都具有良好的阻带深度和隔离度,通带的中心频率和带宽独立可控.  相似文献   

5.
文章中利用基片集成波导和双模滤波器两种技术,对基片集成波导双模带通滤波器的设计进行了研究,设计了一种微波带通滤波器结构,该滤波器结构简单,无载品质因数高达9000.应用凹型过渡结构,使基片集成波导与微带线的过渡问题得到很好解决,使基片集成波导双模带通滤波器便于集成.设计的滤波器中心频率在5.61GHz,通过TE102和TE201两种模式耦合,形成一个传输零点,改善了滤波器的性能,通带内反射损耗S11优于24dB,3dB带宽达50MHz.  相似文献   

6.
基于传统三角形双模贴片微带带通滤波器,提出了一种新型的贴片上开槽的等腰三角形双模带通滤波器.在等腰三角形贴片谐振器内部挖出一个T形槽,并对其进行了优化,优化后的滤波器能在通带两侧都产生衰减极点,提高了阻带的抑制能力,同时保证了滤波器的小型化.对该结构进行仿真,仿真结果表明通带的中心频率为5GHz,与实测结果相一致.  相似文献   

7.
提出一种新型的电容可调的微带带通滤波器, 由两个双模开环谐振器组成. 由于该谐振器的两种模式(奇模和偶模)之间不存在耦合的特性, 因此可使用一个简单的直流偏置电路来分别调节谐振器的奇模和偶模频率, 最终实现通带频率可调. 通过对谐振器模型的耦合矩阵分析, 在通带的边缘会产生传输零点, 从而大大提高了滤波器的频率选择性. 该滤波器在0.871.03 GHz(GSM 900)范围内可调, 通带内回波损耗大于20 dB, 且仿真曲线形状基本不变. 滤波器的测试结果与仿真结果基本吻合.  相似文献   

8.
设计了一种基于共面波导的新型小型化超宽带带通滤波器,给出了滤波器的设计结构及其等效电路,通过仿真优化得出其特性曲线图,并分析比较了不同结构参数对滤波器特性的影响.结果表明,我们设计的超宽带滤波器可在3.1 GHz~10.3 GHz的通带范围内插入损耗小于0.5 dB,回波损耗大于10 dB.同时,新的滤波器的尺寸为0.36gλ(gλ为中心频率上的导波波长),便于实现系统的小型化.文中结果通过商用电磁仿真软件Ensemble学生版仿真得到.  相似文献   

9.
文章提出一种新颖的小型化谐波抑制方形贴片双模带通滤波器,在方形贴片上开2个十字正交矩形缝隙以降低贴片的谐振频率;用一对由窄缝链接起来的小方块作为微扰源,并激励起简并模,输入/输出谐振器则采用L形开路结构.仿真结果表明,该滤波器的体积远小于传统未开槽的滤波器,且寄生通带出现在基波的3倍频处,通带外谐波抑制在-30 dB以...  相似文献   

10.
在传统缺陷接地结构(DGS)哑铃型微带线的基础上,提出了一种新型DGS,即将哑铃型DGS中的长方形缝隙变为蛇形缝隙.借助于Designer软件,得到哑铃型DGS与新型DGS的仿真结果.在相同缺陷面积条件下,新型结构可获得更低的衰减频率,而在衰减频率相同时,所占用缺陷面积也更少,衰减频率降低约3 GHz,缺陷面积减少为原来的30%左右,减小了对级联电路的辐射影响,提高了系统的电磁兼容性.分析了结构参数变化对阻带特性的影响,并将新型DGS应用于紧凑结构带通滤波器(BPF)的设计.仿真结果验证了新型DGS带通滤波器的有效性和可行性.  相似文献   

11.
提出了一种通过在微带结构的接地金属板上蚀刻缝隙构成的岔线型缺陷地结构(岔线型DGS).利用岔线型缺陷地结构的阻带特性,设计了一个基于岔线型DGS的超宽阻带低通滤波器,其由两个岔线型缺陷地单元和微带高低阻抗传输线组合而成,实现了岔线型DGS低通滤波器的小型化和宽阻带.仿真结果表明,该滤波器3dB截止频率为2.87GHz,通带内S11均低于-20dB,阻带在-20dB以下的频段为3.5~20.3GHz,有效抑制了二次、三次或更高次的谐波响应.相比传统DGS低通滤波器的阻带拓宽了28%,当衰减极点相同时,占用面积减少了74%.实测结果与仿真结果相比具有很好的一致性.  相似文献   

12.
提出了一种在缺陷接地结构(DGS)中用交指电容代替缝隙电容的方法.将交指电容用于DGS共面波导,与缝隙电容DGS相比,交指电容DGS更能使电容的耦合加强,它增加了电容值,使得电路尺寸之间的倍数关系减小,有利于电路的设计和制作,滤波深度和滤波的陡峭程度显著增大,有效改善了DGS共面波导的特性.同时,将该结构用于共面波导贴片天线的设计中,得到了基于交指型DGS的超宽带共面波导天线,与没有DGS的共面波导天线相比,新型天线的带宽增加了600MHz,其相对带宽由84%提高到103%,达到5个倍频程.  相似文献   

13.
针对超宽带滤波器插损较大、阻带较窄的问题,提出一种曲折型缺陷地结构小型超宽带滤波器的设计方法.首先,在金属地面上开曲折型缝隙,得到曲折型缺陷地结构;然后,依据曲折型缺陷地平行耦合线和传输线的结构特点,分别构造它们的等效电路模型,再结合HFSS仿真来验证电路模型的正确性,推导出结构尺寸与等效电路元件参数之间的对应关系,得出曲折型缺陷地平行耦合线具有超宽带特性和曲折型缺陷地传输线具有低通高选择性的结论.结合这两种结构的优点设计了一种结构简单、具有宽阻带的超宽带滤波器.测试结果表明,与传统缺陷地结构和复合左右手传输线(CRLH)结构的超宽带滤波器相比,该滤波器具有插损小的特点,其带内最大插损仅为0.88 dB,阻带抑制在11.75~20 GHz范围内均小于-30 dB.  相似文献   

14.
为了设计具有电流控制功能的电流模式滤波器,研究了应用电流镜实现高阶线性变换有源滤波器.基于线性变换,给出了实现电流模式电流镜滤波器的系统设计简表,以便于设计全极点与椭圆函数滤波器.通过实例实现了仅由电流镜和接地电容组成的三阶椭圆低通滤波器.并采用0.18 μm CMOS工艺对电路进行PSPICE仿真.仿真结果表明,该电...  相似文献   

15.
提出了一种星载高功率波导低通滤波器的精确设计方法,将滤波器分布低通原型参数转换成广义阻抗变换系数,采用模匹配法等数值算法精确计算矩形波导中客性膜片的散射参数,进而获得其广义阻抗变换系数,然后通过插值,直接得到滤波器的所有结构参数.该方法避免了常规设计方法中对结构参数的反复调整,提高了设计效率和设计精度.设计并制作了1台2.5GHz和1台22GHz的矩形波导低通滤波器,典型性能为带内驻波比小于1.2,损耗波动小于0.15dB,测试结果与设计数据一致,满足了技术指标要求.  相似文献   

16.
用时域有限差分法(FDTD)对超宽带(相对带宽>25%)信号在矩型波导中的传播情况进行分析,给出了超宽带信号在矩型波导中传播时的时域波型及其频谱的变化情况。研究表明超宽带信号在矩型波导中传播时会出现失真,而且传播距离越远,失真越大。  相似文献   

17.
本文对 CMOS 晶体管模拟滤波器提出了一种新的设计方法,该设计是建立在工作于亚阀值下的 MOS(金属氧化物)晶体管固有电容积分器基础上的,下文给出了设计思路和设计例子。  相似文献   

18.
采用模式匹配法优化设计了单双混合金属膜片波导带通滤波器,并利用基片集成波导和普通矩形波导之间的转换公式,将普通波导滤波器改用基片集成波导结构来实现.滤波器采用单双E面膜片相结合的混合型结构,不仅降低了双膜片滤波器的加工复杂度,同时保持了双膜片滤波器的高端阻带抑制好的特性.此类滤波器结构简单、成本低廉,便于加工,适合批量生产.实验和仿真结果验证了模式匹配法的精确性和经验公式的可靠性.  相似文献   

19.
单块电流传输器实现高低通滤波器   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号