首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究锂离子电池在遭受不同温度的外部刺激后其行为的差异性,实验对同一荷电状态的锂离子电池进行了不同温度的热处理,并考察了其被热处理后的热失控行为。研究通过分析锂离子电池热失控时间、热失控温度以及热失控时的电压变化,考察了不同热处理温度对同一荷电状态下的锂离子电池热失控特性的影响。研究表明,不同热处理温度对同一荷电状态下的锂离子电池的热失控最高温度及热失控时的电压变化有明显影响。热处理至80℃的锂离子电池热失控时的最高温度高于热处理至60℃及100℃时的锂离子电池。100℃热处理过的锂离子电池热失控时电压最先下降,80℃及60℃热处理过的锂离子紧随其后。实验结果可为高温环境中锂离子电池的安全应用提供理论参考。  相似文献   

2.
为探究高温环境对软包锂电池热安全性影响,通过对三元软包锂电池进行80℃高温热处理,模拟研究高温环境对三元软包锂电池热安全性能的影响.对比分析了高温对软包锂电池热失控温度、电压和电压/容量微分dV/dQ曲线等的影响.实验发现,随着热处理次数增加,电池充放电容量依次降低,其中第三次热处理对电池容量影响最显著.电池内部结构受...  相似文献   

3.
锂离子电池安全性至关重要,利用加速绝热量热仪对荷电状态分别为0%、25%、50%、75%、100%的21700型锂离子电池进行热失控行为探究,同时对隔膜进行热稳定性分析.研究表明:荷电量越大发生副反应的初始温度点越低、热失控的起始温度点越低、最高温度越高;荷电量越大发生热失控时温升速率越大、反应越剧烈且质量损失越多.该...  相似文献   

4.
为了方便实时估算三元锂电池的荷电状态,对三元锂电池建立二阶RC模型,结合混合脉冲充放电试验并通过最小二乘法对二阶RC模型进行参数识别,提出基于安时积分法策略的扩展卡尔曼滤波的荷电状态估算方法.在Matlab/Simulink中建立仿真模型,仿真结果表明,与实际的荷电状态值相比,该估算方法可以估计电池的荷电状态,误差在3%以内.  相似文献   

5.
从高温热滥用角度出发,对高湿高温环境中三元锂离子电池的热失控行为进行实验和模拟的对比分析.选择荷电量(SOC)为50%的镍钴锰三元锂离子动力电池(NCM523)作为研究对象,利用恒定功率1kW 的电热炉作为外加热源,加热660s后撤掉外热源,进行湿热环境下NCM三元锂离子电池热滥用实验,并利用COMSOL多物理场仿真软件进行数值模拟.结果表明:常湿条件下,环境初始温度的提高,造成热失控发生的时刻显著提前.对于SOC为50%的NCM三元锂离子电池,在相对湿度为50%的条件下,当环境初始温度由20℃增加到40℃时,电池达到热失控的时间提前了20.2%;在室温为30℃条件下,当环境湿度由50%增加到100%时,热失控导致的最高温度增加了37.2%.高温高湿环境将造成NCM三元锂离子电池热失控的危险性显著增加.  相似文献   

6.
通过锂离子电池的热模拟研究,对比了不同环境温度时,锂离子电池的温度变化和热失控状态. 进一步模拟了绝热条件下,锂电池的热失控状态.  相似文献   

7.
针对锂离子电池热失控引发的民航运输安全问题,利用自主设计的试验平台,以21700型三元锂离子电池为研究对象,探究了不同荷电状态(SOC)的锂离子电池热失控危险特性,包括表面温度、开路电压、电池内阻与质量损失。研究结果表明:21700型单体锂离子电池比18650型锂离子电池额定容量增加了35%,能量密度提高了20%,若出现热安全问题时会更加危险。随着SOC的增加,21700型锂离子电池发生初爆与燃爆的时间间隔缩短。当SOC为20%时,初爆与燃爆时间间隔最长,为471 s;当SOC为40%、60%、80%和100%时,初爆与燃爆时间间隔分别缩短2.5%、18.0%、26.5%和34.0%。锂离子电池发生热失控过程中的表面温度峰值、温升速率与质量损失均随着SOC的增加而增加。锂离子电池在不同荷电状态下发生热失控时,开路电压和电池内阻变化具有一定的规律性。  相似文献   

8.
为提高细水雾抑制锂电池热失控效率,开展了含不同添加剂的细水雾抑制锂电池热失控的实验研究。通过对锂电池的温度变化趋势、降低到临界温度以下所用的时间、电池燃爆节数等参数对比分析,结果表明:加入添加剂后显著提高了细水雾抑制锂电池热失控的能力;三乙醇胺添加剂使细水雾的雾滴表面张力下降,迅速达到降低电池表面温度的效果,并且能有效抑制住锂电池热失控的传递,相比于碳酸氢钠、十二烷基苯磺酸钠两种添加剂,三乙醇胺细水雾抑制锂电池热失控的效率最佳。该研究为保证锂电池航空安全运输提供了理论支持和技术指导。  相似文献   

9.
锂离子电池在储能系统中已得到普遍应用,但其会由于热失控而产生自燃、爆炸等引发安全事故, 如何对储能锂离子电池热失控故障风险进行超前预测和判定是当前研究的热点问题。将电热物理模型与深 度学习模型长短期记忆模型(LSTM)相结合,提出一种基于混合模型的储能锂离子电池热失控预判方法。 通过收集电池运行数据,利用电池的电热耦合模型进行电池内部温度、荷电状态(SOC)的估算;同时,将电池 表面温度、电池电压、电池电流等参数共同作为 LSTM 的输入,利用混合模型精确预测电池的表面温度和内 部温度。通过阈值方法判定热失控的发生并确定诱发原因,从而实现对电池热失控的准确预测。基于公开 数据集的实验结果表明,提出的混合模型进行热失控预判具有较好的精确性和快速性,在实际工程应用中有 着较好的应用前景。  相似文献   

10.
现阶段影响纯电动汽车发展的重要因素之一为电池,而考量电池的一项重要指标为锂电池的荷电状态(SOC),对锂电池荷电状态进行准确估算,可为其剩余里程预测以及电池能量管理提供相应的数据支持。锂电池作为常用的充电设备,其SOC难以估测制约了新能源汽车的发展。针对锂电池荷电状态估算的问题,分析其工作原理,建立磷酸铁锂电池的模型,通过对锂电池内部的相关参数进行辨识,基于扩展卡尔曼滤波算法(EKF)和无轨迹卡尔曼滤波算法(UKF),在Matlab中运用上述算法对磷酸铁锂电池的SOC进行估算。通过仿真得出两种算法的误差,进一步表明UKF具有较高的精确度,其估算误差能够保持在4%范围之内,可满足锂离子电池荷电状态的要求。  相似文献   

11.
为提高锂离子电池的过热安全性,本文针对荷电状态(state of charge,SOC)为0%、50%、100%的18650型锂离子电池进行热失控及传播实验,研究了电池间不同的竖直距离对电池表面温度、φ(O2)、φ(CO)的影响。结果表明:锂离子电池在0%SOC、距离为1 cm时只有加热阶段,并且表面温度最后稳定在一定值;50%SOC、100%SOC热失控传播的临界距离为3、4 cm;在热失控及传播过程中,电池表面的喷射温度和最大温度、φ(O2)和φ(CO)最大变化与距离无关,SOC越大,喷射温度越低,最大温度越高。  相似文献   

12.
针对锂电池荷电状态估计不准确的问题,在对不同荷电状态的锂电池电化学阻抗谱进行了分析的基础上,利用分数阶建模思想建立了分数阶阻抗模型,并设计出一种分数阶卡尔曼滤波器,同时利用混合动力脉冲能力实验对建立的分数阶模型进行了参数辨识,从而实现了锂电池荷电状态的估算。实验及仿真结果表明:所设计的分数阶阻抗模型与分数阶卡尔曼滤波器能准确地描述锂电池的特性,使得荷电状态估算精度得以提高;在城市道路循环工况下,锂电池的电压追踪误差可以稳定在0.05V之内,在初始荷电状态未知的条件下,电池的荷电状态估计误差可以稳定在±1%。  相似文献   

13.
采用数值模拟方法研究了过充电流(1C、2C、3C和4C)对三元锂离子电池热失控行为的影响.基于多物理场耦合方法建立了过充电条件下锂离子电池三维电-热耦合模型,对电池发生热失控的临界时间,临界温度以及热分布进行了模拟计算.模拟结果与试验测量结果符合较好,各个测试点处的温度和热失控临界点的误差小于8%.过充电流对锂离子电池热失控的临界温度、临界时间以及电池内外部温差有较大影响:过充电流越大,电池发生热失控的时间越短,临界温度越高,区域温差越大,内外部温差越大.   相似文献   

14.
研究了三元乙丙橡胶(EPDM)阻燃热防护材料配方中的阻燃剂、厚度对其性能的影响,以及在锂离子电池中的应用效果.结果发现具有阻燃配方的EPDM的背面温度低于未加阻燃剂的EPDM,随阻燃剂的加入和样品厚度的增加,EPDM的背面温度降低、阻燃性能提高.在火源温度为500℃的条件下,厚度为3,6 mm加阻燃剂的EPDM的稳定温度分别为185.1,165.7℃.选用厚度3 mm的阻燃EPDM作为锂电池组的热防护材料,电池热失控过程中仅1块电池发生爆炸,而未进行热防护的电池组中共有5块电池相继发生爆炸.以电池组为中心,在无热防护的锂电池组燃烧爆炸实验时,距电池组半径30 cm处圆形区域温度均受到电池燃烧爆炸的影响而达到高达300℃的高温,属于十分危险的范围;而在使用EPDM热防护材料对锂离子电池进行防护后,此区域的温度在20~28℃之间浮动,属于十分安全的温度范围.  相似文献   

15.
电动汽车动力锂电池内部荷电状态估计是电池管理系统状态估计模块的核心,其无法通过仪器直接测量,仅能通过对电池外部电流、电压等参数进行测量并由此估计。准确的荷电状态估计对电池的寿命、容量和安全性管理至关重要。本文综述了用于电动汽车动力锂电池荷电状态估算的主要方法,根据算法差异将其分为传统的基于传感器测量的开路电压法、电流积分法和阻抗法,基于数据驱动的机器学习类算法以及基于模型的卡尔曼滤波器及粒子滤波器算法与融合类算法。深入介绍了不同估计算法的计算原理并由此分析比较了不同估计算法的计算复杂度、计算精度等特点。总结了现阶段锂离子电池荷电状态估算研究存在的问题,指出其研究趋势和未来发展方向将是更具泛化性和更高精度以及更佳实时性的多融合类估算方法。  相似文献   

16.
基于MatlabSimulink的Simscape模块,建立了电池二阶等效电路模型,并进行了参数辨识和模型验证,完成了硬件电路和软件设计,从而构建了一种新的动力锂电池模拟器.仿真和测试结果表明:在对电池模型进行参数辨识时,增加荷电状态在0至0.10区间的间隔点,可进一步提高电池模型精度;在HPPC循环放电工况下,电压最大误差不超过0.07 V;在动态运行工况下,电压最大误差不超过0.12 V;在不同的荷电状态下,动力锂电池模拟器电压输出最大误差为1.9 mV,相对误差为0.53‰,验证了所设计的动力锂电池模拟器具有较高的精度,可用于电池管理系统的功能验证.  相似文献   

17.
为了降低电动汽车能量消耗,提高乘员舱舒适性,该文提出一种集空调、电池预热和电机余热回收为一体的电动汽车热管理系统。进行了电动汽车热管理系统设计与理论分析,制定了整车温度控制策略。在AMESim环境下搭建了由驱动系统、电池温控系统和乘员舱等组成的整车热管理系统仿真模型,对其在不同环境温度、不同运行工况下的特性进行了仿真分析。结果表明:在冬季寒冷工况下采用正温度系数(PTC)电加热器及电机废热共同加热乘员舱的方法,降低了乘员舱PTC电加热器的使用时间,电池荷电状态(SoC)在车辆运行中的消耗降低0.20%~3.98%,整车温度控制策略有效可行。  相似文献   

18.
电池生产过程中,因为材料体系及加工工艺的原因,电池会存在不同程度的容量损失,容量损失较大的电池不仅影响正常使用而且会影响整个电池模块的安全性能。该文研究了一种快速磷酸铁锂电池容量损失检测工艺。通过研究锂电池不同荷电状态与开路电压的对应关系,容量损失与电压降的关系,不同荷电状态下不同时间电压降测试,研究了一种锂电池容量损失检测工艺,可通过简单快速的方法将容量损失较大的电池剔除,确保了电池的安全性。  相似文献   

19.
针对锂离子电池的电-热-机耦合特性,设计了一套耦合特性综合测试系统,进行了电池不同倍率充放电工况下电-热-机耦合特性的测试与分析,以探究电池电特性、形变、温度的时间演变规律与空间分布特性,可以得到电池荷电状态(state of charge,SOC)-形变曲线具有明显的分段特性,可以辅助磷酸铁锂电池SOC估计的修正。基于该系统测试结果研究了电池充放电过程形变产生的机理,并进行了电池热膨胀系数的参数辨识。实验结果表明:高倍率放电时,在放电初期和中期电池边缘部分膨胀,放电后期收缩,而中心位置在放电初期和中期收缩,后期膨胀;低倍率放电时,电池表现为放电初期和后期整体收缩,中期整体膨胀。研究结果可为电池内部电-热-机耦合特性的理论分析与测试管理提供依据。  相似文献   

20.
针对航空货运锂离子电池的特殊环境,以及运输过程中热失控安全问题,自主设计搭建锂离子电池热失控实验平台,在康定机场(4290m,60kPa)高高原航空安全实验室开展实验。主要研究热失控过程中不同荷电量锂离子电池温度变化、氧消耗量、CO和CO2生成量以及开路电压变化情况。通过低压环境下锂离子电池热失控的研究,为航空货运锂离子电池的安全性提供了一定的理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号