首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
2.
3.
Bone metastases are a frequent complication of many cancers that result in severe disease burden and pain. Since the late nineteenth century, it has been thought that the microenvironment of the local host tissue actively participates in the propensity of certain cancers to metastasize to specific organs, and that bone provides an especially fertile 'soil'. In the case of breast cancers, the local chemokine milieu is now emerging as an explanation for why these tumours preferentially metastasize to certain organs. However, as the inhibition of chemokine receptors in vivo only partially blocks metastatic behaviour, other factors must exist that regulate the preferential metastasis of breast cancer cells. Here we show that the cytokine RANKL (receptor activator of NF-kappaB ligand) triggers migration of human epithelial cancer cells and melanoma cells that express the receptor RANK. RANK is expressed on cancer cell lines and breast cancer cells in patients. In a mouse model of melanoma metastasis, in vivo neutralization of RANKL by osteoprotegerin results in complete protection from paralysis and a marked reduction in tumour burden in bones but not in other organs. Our data show that local differentiation factors such as RANKL have an important role in cell migration and the tissue-specific metastatic behaviour of cancer cells.  相似文献   

4.
Hedgehog signalling in prostate regeneration, neoplasia and metastasis   总被引:1,自引:0,他引:1  
Metastatic cancers adopt certain properties of normal cells in developing or regenerating organs, such as the ability to proliferate and alter tissue organization. We find here that activity of the Hedgehog (Hh) signalling pathway, which has essential roles in developmental patterning, is required for regeneration of prostate epithelium, and that continuous pathway activation transforms prostate progenitor cells and renders them tumorigenic. Elevated pathway activity furthermore distinguishes metastatic from localized prostate cancer, and pathway manipulation can modulate invasiveness and metastasis. Pathway activity is triggered in response to endogenous expression of Hh ligands, and is dependent upon the expression of Smoothened, an essential Hh response component that is not expressed in benign prostate epithelial cells. Monitoring and manipulating Hh pathway activity may thus offer significant improvements in diagnosis and treatment of prostate cancers with metastatic potential.  相似文献   

5.
6.
Kim JH  Kim B  Cai L  Choi HJ  Ohgi KA  Tran C  Chen C  Chung CH  Huber O  Rose DW  Sawyers CL  Rosenfeld MG  Baek SH 《Nature》2005,434(7035):921-926
Defining the molecular strategies that integrate diverse signalling pathways in the expression of specific gene programmes that are critical in homeostasis and disease remains a central issue in biology. This is particularly pertinent in cancer biology because downregulation of tumour metastasis suppressor genes is a common occurrence, and the underlying molecular mechanisms are not well established. Here we report that the downregulation of a metastasis suppressor gene, KAI1, in prostate cancer cells involves the inhibitory actions of beta-catenin, along with a reptin chromatin remodelling complex. This inhibitory function of beta-catenin-reptin requires both increased beta-catenin expression and recruitment of histone deacetylase activity. The coordinated actions of beta-catenin-reptin components that mediate the repressive state serve to antagonize a Tip60 coactivator complex that is required for activation; the balance of these opposing complexes controls the expression of KAI1 and metastatic potential. The molecular mechanisms underlying the antagonistic regulation of beta-catenin-reptin and the Tip60 coactivator complexes for the metastasis suppressor gene, KAI1, are likely to be prototypic of a selective downregulation strategy for many genes, including a subset of NF-kappaB target genes.  相似文献   

7.
NAK is an IkappaB kinase-activating kinase   总被引:13,自引:0,他引:13  
  相似文献   

8.
Endogenous human microRNAs that suppress breast cancer metastasis   总被引:6,自引:0,他引:6  
  相似文献   

9.
10.
Breast cancer is one of the most common cancers in humans and will on average affect up to one in eight women in their lifetime in the United States and Europe. The Women's Health Initiative and the Million Women Study have shown that hormone replacement therapy is associated with an increased risk of incident and fatal breast cancer. In particular, synthetic progesterone derivatives (progestins) such as medroxyprogesterone acetate (MPA), used in millions of women for hormone replacement therapy and contraceptives, markedly increase the risk of developing breast cancer. Here we show that the in vivo administration of MPA triggers massive induction of the key osteoclast differentiation factor RANKL (receptor activator of NF-κB ligand) in mammary-gland epithelial cells. Genetic inactivation of the RANKL receptor RANK in mammary-gland epithelial cells prevents MPA-induced epithelial proliferation, impairs expansion of the CD49f(hi) stem-cell-enriched population, and sensitizes these cells to DNA-damage-induced cell death. Deletion of RANK from the mammary epithelium results in a markedly decreased incidence and delayed onset of MPA-driven mammary cancer. These data show that the RANKL/RANK system controls the incidence and onset of progestin-driven breast cancer.  相似文献   

11.
12.
CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis   总被引:1,自引:0,他引:1  
Qian BZ  Li J  Zhang H  Kitamura T  Zhang J  Campion LR  Kaiser EA  Snyder LA  Pollard JW 《Nature》2011,475(7355):222-225
Macrophages, which are abundant in the tumour microenvironment, enhance malignancy. At metastatic sites, a distinct population of metastasis-associated macrophages promotes the extravasation, seeding and persistent growth of tumour cells. Here we define the origin of these macrophages by showing that Gr1-positive inflammatory monocytes are preferentially recruited to pulmonary metastases but not to primary mammary tumours in mice. This process also occurs for human inflammatory monocytes in pulmonary metastases of human breast cancer cells. The recruitment of these inflammatory monocytes, which express CCR2 (the receptor for chemokine CCL2), as well as the subsequent recruitment of metastasis-associated macrophages and their interaction with metastasizing tumour cells, is dependent on CCL2 synthesized by both the tumour and the stroma. Inhibition of CCL2-CCR2 signalling blocks the recruitment of inflammatory monocytes, inhibits metastasis in vivo and prolongs the survival of tumour-bearing mice. Depletion of tumour-cell-derived CCL2 also inhibits metastatic seeding. Inflammatory monocytes promote the extravasation of tumour cells in a process that requires monocyte-derived vascular endothelial growth factor. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer. Our data provide the mechanistic link between these two clinical associations and indicate new therapeutic targets for treating metastatic breast cancer.  相似文献   

13.
Png KJ  Halberg N  Yoshida M  Tavazoie SF 《Nature》2012,481(7380):190-194
Metastatic progression of cancer is a complex and clinically daunting process. We previously identified a set of human microRNAs (miRNAs) that robustly suppress breast cancer metastasis to lung and bone and which display expression levels that predict human metastasis. Although these findings revealed miRNAs as suppressors of cell-autonomous metastatic phenotypes, the roles of non-coding RNAs in non-cell-autonomous cancer progression processes remain unknown. Here we reveal that endogenous miR-126, an miRNA silenced in a variety of common human cancers, non-cell-autonomously regulates endothelial cell recruitment to metastatic breast cancer cells, in vitro and in vivo. It suppresses metastatic endothelial recruitment, metastatic angiogenesis and metastatic colonization through coordinate targeting of IGFBP2, PITPNC1 and MERTK--novel pro-angiogenic genes and biomarkers of human metastasis. Insulin-like growth factor binding protein 2 (IGFBP2) secreted by metastatic cells recruits endothelia by modulating IGF1-mediated activation of the IGF type-I receptor on endothelial cells; whereas c-Mer tyrosine kinase (MERTK) receptor cleaved from metastatic cells promotes endothelial recruitment by competitively antagonizing the binding of its ligand GAS6 to endothelial MERTK receptors. Co-injection of endothelial cells with breast cancer cells non-cell-autonomously rescues their miR-126-induced metastatic defect, revealing a novel and important role for endothelial interactions in metastatic initiation. Through loss-of-function and epistasis experiments, we delineate an miRNA regulatory network's individual components as novel and cell-extrinsic regulators of endothelial recruitment, angiogenesis and metastatic colonization. We also identify the IGFBP2/IGF1/IGF1R and GAS6/MERTK signalling pathways as regulators of cancer-mediated endothelial recruitment. Our work further reveals endothelial recruitment and endothelial interactions in the tumour microenvironment to be critical features of metastatic breast cancer.  相似文献   

14.
Genomic analysis of metastasis reveals an essential role for RhoC   总被引:124,自引:0,他引:124  
Clark EA  Golub TR  Lander ES  Hynes RO 《Nature》2000,406(6795):532-535
The most damaging change during cancer progression is the switch from a locally growing tumour to a metastatic killer. This switch is believed to involve numerous alterations that allow tumour cells to complete the complex series of events needed for metastasis. Relatively few genes have been implicated in these events. Here we use an in vivo selection scheme to select highly metastatic melanoma cells. By analysing these cells on DNA arrays, we define a pattern of gene expression that correlates with progression to a metastatic phenotype. In particular, we show enhanced expression of several genes involved in extracellular matrix assembly and of a second set of genes that regulate, either directly or indirectly, the actin-based cytoskeleton. One of these, the small GTPase RhoC, enhances metastasis when overexpressed, whereas a dominant-negative Rho inhibits metastasis. Analysis of the phenotype of cells expressing dominant-negative Rho or RhoC indicates that RhoC is important in tumour cell invasion. The genomic approach allows us to identify families of genes involved in a process, not just single genes, and can indicate which molecular and cellular events might be important in complex biological processes such as metastasis.  相似文献   

15.
16.
17.
18.
19.
Stromal cell-derived factor-1 and its receptor CXC chemokine receptor-4 (CXCR4) have been implicated in breast cancer metastasis. A significant association between HER2 and CXCR4 expression has been observed in human breast tumor tissues, and overexpression of CXCR4 is essential for HER2-mediated tumor metastasis. Moreover, CXCR4 expression is low in normal breast tissues and high in malignant tumors, suggesting that a blockade of CXCR4 may limit tumor metastasis. The present study investigated the action of a synthetic antagonist 21-mer peptide derived from viral macrophage inflammatory protein II against CXCR4 (NT21MP) in inhibiting metastasis in vitro and in vivo. The results showed that chemotaxis of SKBR3 cells toward SDF-1α was reduced by NT21MP in a dose-dependent manner (P < 0.05). NT21MP inhibited tumor growth at 500 μg/kg and in combination with Herceptin, the anti-HER2 antibody. The in vivo metastatic assay showed that NT21MP significantly inhibited pulmonary metastasis, and the number of metastatic tumor nodes on the surface of the lung was greatly decreased. Compared with the saline-treated control group, PCNA expression was dose-dependently decreased by NT21MP, the percentage of apoptotic cells was increased, and CXCR4 mRNA and protein expression were downregulated. In conclusion, NT21MP inhibits cellular prolifer-ation, promotes apoptosis by downregulating CXCR4 expression, and suppresses the progression of primary and metastatic tumors. CXCR4 may be a useful therapeutic target for breast cancer, and NT21MP may serve as a potential target drug for the treatment of breast cancer metastasis.  相似文献   

20.
RANK ligand (RANKL), a TNF-related molecule, is essential for osteoclast formation, function and survival through interaction with its receptor RANK. Mammary glands of RANK- and RANKL-deficient mice develop normally during sexual maturation, but fail to form lobuloalveolar structures during pregnancy because of defective proliferation and increased apoptosis of mammary epithelium. It has been shown that RANKL is responsible for the major proliferative response of mouse mammary epithelium to progesterone during mammary lactational morphogenesis, and in mouse models, manipulated to induce activation of the RANK/RANKL pathway in the absence of strict hormonal control, inappropriate mammary proliferation is observed. However, there is no evidence so far of a functional contribution of RANKL to tumorigenesis. Here we show that RANK and RANKL are expressed within normal, pre-malignant and neoplastic mammary epithelium, and using complementary gain-of-function (mouse mammary tumour virus (MMTV)-RANK transgenic mice) and loss-of function (pharmacological inhibition of RANKL) approaches, define a direct contribution of this pathway in mammary tumorigenesis. Accelerated pre-neoplasias and increased mammary tumour formation were observed in MMTV-RANK transgenic mice after multiparity or treatment with carcinogen and hormone (progesterone). Reciprocally, selective pharmacological inhibition of RANKL attenuated mammary tumour development not only in hormone- and carcinogen-treated MMTV-RANK and wild-type mice, but also in the MMTV-neu transgenic spontaneous tumour model. The reduction in tumorigenesis upon RANKL inhibition was preceded by a reduction in pre-neoplasias as well as rapid and sustained reductions in hormone- and carcinogen-induced mammary epithelial proliferation and cyclin D1 levels. Collectively, our results indicate that RANKL inhibition is acting directly on hormone-induced mammary epithelium at early stages in tumorigenesis, and the permissive contribution of progesterone to increased mammary cancer incidence is due to RANKL-dependent proliferative changes in the mammary epithelium. The current study highlights a potential role for RANKL inhibition in the management of proliferative breast disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号