首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Watanabe Y  Martini JE  Ohmoto H 《Nature》2000,408(6812):574-578
Microorganisms have flourished in the oceans since at least 3.8 billion years (3.8 Gyr) ago, but it is not at present clear when they first colonized the land. Organic matter in some Au/U-rich conglomerates and ancient soils of 2.3-2.7 Gyr age has been suggested as remnants of terrestrial organisms. Some 2.7-Gyr-old stromatolites have also been suggested as structures created by terrestrial organisms. However, it has been disputed whether this organic matter is indigenous or exogenic, and whether these stromatolites formed in marine or fresh water. Consequently, the oldest undisputed remnants of terrestrial organisms are currently the 1.2-Gyr-old microfossils from Arizona, USA. Unusually carbonaceous ancient soils--palaeosols--have been found in the Mpumalanga Province (Eastern Transvaal) of South Africa. Here we report the occurrences, elemental ratios (C, H, N, P) and isotopic compositions of this organic matter and its host rocks. These data show that the organic matter very probably represents remnants of microbial mats that developed on the soil surface between 2.6 and 2.7 Gyr ago. This places the development of terrestrial biomass more than 1.4 billion years earlier than previously reported.  相似文献   

2.
Reassessing the first appearance of eukaryotes and cyanobacteria   总被引:1,自引:0,他引:1  
Rasmussen B  Fletcher IR  Brocks JJ  Kilburn MR 《Nature》2008,455(7216):1101-1104
The evolution of oxygenic photosynthesis had a profound impact on the Earth's surface chemistry, leading to a sharp rise in atmospheric oxygen between 2.45 and 2.32 billion years (Gyr) ago and the onset of extreme ice ages. The oldest widely accepted evidence for oxygenic photosynthesis has come from hydrocarbons extracted from approximately 2.7-Gyr-old shales in the Pilbara Craton, Australia, which contain traces of biomarkers (molecular fossils) indicative of eukaryotes and suggestive of oxygen-producing cyanobacteria. The soluble hydrocarbons were interpreted to be indigenous and syngenetic despite metamorphic alteration and extreme enrichment (10-20 per thousand) of (13)C relative to bulk sedimentary organic matter. Here we present micrometre-scale, in situ (13)C/(12)C measurements of pyrobitumen (thermally altered petroleum) and kerogen from these metamorphosed shales, including samples that originally yielded biomarkers. Our results show that both kerogen and pyrobitumen are strongly depleted in (13)C, indicating that indigenous petroleum is 10-20 per thousand lighter than the extracted hydrocarbons. These results are inconsistent with an indigenous origin for the biomarkers. Whatever their origin, the biomarkers must have entered the rock after peak metamorphism approximately 2.2 Gyr ago and thus do not provide evidence for the existence of eukaryotes and cyanobacteria in the Archaean eon. The oldest fossil evidence for eukaryotes and cyanobacteria therefore reverts to 1.78-1.68 Gyr ago and approximately 2.15 Gyr ago, respectively. Our results eliminate the evidence for oxygenic photosynthesis approximately 2.7 Gyr ago and exclude previous biomarker evidence for a long delay (approximately 300 million years) between the appearance of oxygen-producing cyanobacteria and the rise in atmospheric oxygen 2.45-2.32 Gyr ago.  相似文献   

3.
The barrage of comets and asteroids that produced many young lunar basins (craters over 300 kilometres in diameter) has frequently been called the Late Heavy Bombardment (LHB). Many assume the LHB ended about 3.7 to 3.8 billion years (Gyr) ago with the formation of Orientale basin. Evidence for LHB-sized blasts on Earth, however, extend into the Archaean and early Proterozoic eons, in the form of impact spherule beds: globally distributed ejecta layers created by Chicxulub-sized or larger cratering events4. At least seven spherule beds have been found that formed between 3.23 and 3.47?Gyr ago, four between 2.49 and 2.63?Gyr ago, and one between 1.7 and 2.1?Gyr ago. Here we report that the LHB lasted much longer than previously thought, with most late impactors coming from the E belt, an extended and now largely extinct portion of the asteroid belt between 1.7 and 2.1 astronomical units from Earth. This region was destabilized by late giant planet migration. E-belt survivors now make up the high-inclination Hungaria asteroids. Scaling from the observed Hungaria asteroids, we find that E-belt projectiles made about ten lunar basins between 3.7 and 4.1?Gyr ago. They also produced about 15 terrestrial basins between 2.5 and 3.7?Gyr ago, as well as around 70 and four Chicxulub-sized or larger craters on the Earth and Moon, respectively, between 1.7 and 3.7?Gyr ago. These rates reproduce impact spherule bed and lunar crater constraints.  相似文献   

4.
Early oxygenation of the terrestrial environment during the Mesoproterozoic   总被引:2,自引:0,他引:2  
Parnell J  Boyce AJ  Mark D  Bowden S  Spinks S 《Nature》2010,468(7321):290-293
Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (~2.3?billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8?Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S?相似文献   

5.
Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate tectonic processes.  相似文献   

6.
Moyen JF  Stevens G  Kisters A 《Nature》2006,442(7102):559-562
Although plate tectonics is the central geological process of the modern Earth, its form and existence during the Archaean era (4.0-2.5 Gyr ago) are disputed. The existence of subduction during this time is particularly controversial because characteristic subduction-related mineral assemblages, typically documenting apparent geothermal gradients of 15 degrees C km(-1) or less, have not yet been recorded from in situ Archaean rocks (the lowest recorded apparent geothermal gradients are greater than 25 degrees C km(-1)). Despite this absence from the rock record, low Archaean geothermal gradients are suggested by eclogitic nodules in kimberlites and circumstantial evidence for subduction processes, including possible accretion-related structures, has been reported in Archaean terrains. The lack of spatially and temporally well-constrained high-pressure, low-temperature metamorphism continues, however, to cast doubt on the relevance of subduction-driven tectonics during the first 1.5 Gyr of the Earth's history. Here we report garnet-albite-bearing mineral assemblages that record pressures of 1.2-1.5 GPa at temperatures of 600-650 degrees C from supracrustal amphibolites from the mid-Archaean Barberton granitoid-greenstone terrain. These conditions point to apparent geothermal gradients of 12-15 degrees C-similar to those found in recent subduction zones-that coincided with the main phase of terrane accretion in the structurally overlying Barberton greenstone belt. These high-pressure, low-temperature conditions represent metamorphic evidence for cold and strong lithosphere, as well as subduction-driven tectonic processes, during the evolution of the early Earth.  相似文献   

7.
The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48?Gyr ago, but within the 160?Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48?Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.  相似文献   

8.
Dating the rise of atmospheric oxygen   总被引:8,自引:0,他引:8  
Several lines of geological and geochemical evidence indicate that the level of atmospheric oxygen was extremely low before 2.45 billion years (Gyr) ago, and that it had reached considerable levels by 2.22 Gyr ago. Here we present evidence that the rise of atmospheric oxygen had occurred by 2.32 Gyr ago. We found that syngenetic pyrite is present in organic-rich shales of the 2.32-Gyr-old Rooihoogte and Timeball Hill formations, South Africa. The range of the isotopic composition of sulphur in this pyrite is large and shows no evidence of mass-independent fractionation, indicating that atmospheric oxygen was present at significant levels (that is, greater than 10(-5) times that of the present atmospheric level) during the deposition of these units. The presence of rounded pebbles of sideritic iron formation at the base of the Rooihoogte Formation and an extensive and thick ironstone layer consisting of haematitic pisolites and o?lites in the upper Timeball Hill Formation indicate that atmospheric oxygen rose significantly, perhaps for the first time, during the deposition of the Rooihoogte and Timeball Hill formations. These units were deposited between what are probably the second and third of the three Palaeoproterozoic glacial events.  相似文献   

9.
Ueno Y  Yamada K  Yoshida N  Maruyama S  Isozaki Y 《Nature》2006,440(7083):516-519
Methanogenic microbes may be one of the most primitive organisms, although it is uncertain when methanogens first appeared on Earth. During the Archaean era (before 2.5 Gyr ago), methanogens may have been important in regulating climate, because they could have provided sufficient amounts of the greenhouse gas methane to mitigate a severely frozen condition that could have resulted from lower solar luminosity during these times. Nevertheless, no direct geological evidence has hitherto been available in support of the existence of methanogens in the Archaean period, although circumstantial evidence is available in the form of approximately 2.8-Gyr-old carbon-isotope-depleted kerogen. Here we report crushing extraction and carbon isotope analysis of methane-bearing fluid inclusions in approximately 3.5-Gyr-old hydrothermal precipitates from Pilbara craton, Australia. Our results indicate that the extracted fluids contain microbial methane with carbon isotopic compositions of less than -56 per thousand included within original precipitates. This provides the oldest evidence of methanogen (> 3.46 Gyr ago), pre-dating previous geochemical evidence by about 700 million years.  相似文献   

10.
Sulphur isotope evidence for an oxic Archaean atmosphere   总被引:1,自引:0,他引:1  
Ohmoto H  Watanabe Y  Ikemi H  Poulson SR  Taylor BE 《Nature》2006,442(7105):908-911
The presence of mass-independently fractionated sulphur isotopes (MIF-S) in many sedimentary rocks older than approximately 2.4 billion years (Gyr), and the absence of MIF-S in younger rocks, has been considered the best evidence for a dramatic change from an anoxic to oxic atmosphere around 2.4 Gyr ago. This is because the only mechanism known to produce MIF-S has been ultraviolet photolysis of volcanic sulphur dioxide gas in an oxygen-poor atmosphere. Here we report the absence of MIF-S throughout approximately 100-m sections of 2.76-Gyr-old lake sediments and 2.92-Gyr-old marine shales in the Pilbara Craton, Western Australia. We propose three possible interpretations of the MIF-S geologic record: (1) the level of atmospheric oxygen fluctuated greatly during the Archaean era; (2) the atmosphere has remained oxic since approximately 3.8 Gyr ago, and MIF-S in sedimentary rocks represents times and regions of violent volcanic eruptions that ejected large volumes of sulphur dioxide into the stratosphere; or (3) MIF-S in rocks was mostly created by non-photochemical reactions during sediment diagenesis, and thus is not linked to atmospheric chemistry.  相似文献   

11.
Shields GA  Kasting JF 《Nature》2007,447(7140):E1; discussion E1-E1; discussion E2
The oxygen isotopes in sedimentary cherts (siliceous sediments) have been used to argue that the Precambrian oceans were hot--with temperatures of up to 70 degrees C at 3.3 Gyr before present. Robert and Chaussidon measure silicon isotopes in cherts and arrive at a similar conclusion. We suggest here that both isotope trends may be caused by variations in seawater isotope composition, rather than in ocean temperatures. If so, then the climate of the early Earth may have been temperate, as it is today, and therefore more consistent with evidence for Precambrian glaciations and with constraints inferred from biological evolution.  相似文献   

12.
Doushantuo embryos preserved inside diapause egg cysts   总被引:2,自引:0,他引:2  
Yin L  Zhu M  Knoll AH  Yuan X  Zhang J  Hu J 《Nature》2007,446(7136):661-663
Phosphatized microfossils in the Ediacaran (635-542 Myr ago) Doushantuo Formation, south China, have been interpreted as the embryos of early animals. Despite experimental demonstration that embryos can be preserved, microstructural evidence that the Doushantuo remains are embryonic and an unambiguous record of fossil embryos in Lower Cambrian rocks, questions about the phylogenetic relationships of these fossils remain. Most recently, some researchers have proposed that Doushantuo microfossils may be giant sulphur-oxidizing bacteria comparable to extant Thiomargarita sp. Here we report new observations that provide a test of the bacterial hypothesis. The discovery of embryo-like Doushantuo fossils inside large, highly ornamented organic vesicles (acritarchs) indicates that these organisms were eukaryotic, and most probably early cleavage stage embryos preserved within diapause egg cysts. Large acanthomorphic microfossils of the type observed to contain fossil embryos first appear in rocks just above a 632.5 +/- 0.5-Myr-old ash bed, suggesting that at least stem-group animals inhabited shallow seas in the immediate aftermath of global Neoproterozoic glaciation.  相似文献   

13.
Rasmussen B 《Nature》2000,405(6787):676-679
The record of Archaean microfossils is sparse. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes are ubiquitous in modern sea-floor hydrothermal settings, and apparently have the most ancient lineages. Here, I report the discovery of pyritic filaments, the probable fossil remains of thread-like microorganisms, in a 3,235-million-year-old deep-sea volcanogenic massive sulphide deposit from the Pilbara Craton of Australia. From their mode of occurrence, the micro-organisms were probably thermophilic chemotropic prokaryotes, which inhabited sub-sea-floor hydrothermal environments. They represent the first fossil evidence for microbial life in a Precambrian submarine thermal spring system, and extend the known range of submarine hydrothermal biota by more than 2,700 million years. Such environments may have hosted the first living systems on Earth, consistent with proposals for a thermophilic origin of life.  相似文献   

14.
Morphological and ecological complexity in early eukaryotic ecosystems.   总被引:18,自引:0,他引:18  
E J Javaux  A H Knoll  M R Walter 《Nature》2001,412(6842):66-69
Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.  相似文献   

15.
Bizzarro M  Baker JA  Haack H  Ulfbeck D  Rosing M 《Nature》2003,421(6926):931-933
The 176Lu to 176Hf decay series has been widely used to understand the nature of Earth's early crust-mantle system. The interpretation, however, of Lu-Hf isotope data requires accurate knowledge of the radioactive decay constant of 176Lu (lambda176Lu), as well as bulk-Earth reference parameters. A recent calibration of the lambda176Lu value calls for the presence of highly unradiogenic hafnium in terrestrial zircons with ages greater than 3.9 Gyr, implying widespread continental crust extraction from an isotopically enriched mantle source more than 4.3 Gyr ago, but does not provide evidence for a complementary depleted mantle reservoir. Here we report Lu-Hf isotope measurements of different Solar System objects including chondrites and basaltic eucrites. The chondrites define a Lu-Hf isochron with an initial 176Hf/177Hf ratio of 0.279628 +/- 0.000047, corresponding to lambda176Lu = 1.983 +/- 0.033 x 10-11 yr-1 using an age of 4.56 Gyr for the chondrite-forming event. This lambda176Lu value indicates that Earth's oldest minerals were derived from melts of a mantle source with a time-integrated history of depletion rather than enrichment. The depletion event must have occurred no later than 320 Myr after planetary accretion, consistent with timing inferred from extinct radionuclides.  相似文献   

16.
Shen Y  Buick R  Canfield DE 《Nature》2001,410(6824):77-81
Sulphate-reducing microbes affect the modern sulphur cycle, and may be quite ancient, though when they evolved is uncertain. These organisms produce sulphide while oxidizing organic matter or hydrogen with sulphate. At sulphate concentrations greater than 1 mM, the sulphides are isotopically fractionated (depleted in 34S) by 10-40/1000 compared to the sulphate, with fractionations decreasing to near 0/1000 at lower concentrations. The isotope record of sedimentary sulphides shows large fractionations relative to seawater sulphate by 2.7 Gyr ago, indicating microbial sulphate reduction. In older rocks, however, much smaller fractionations are of equivocal origin, possibly biogenic but also possibly volcanogenic. Here we report microscopic sulphides in approximately 3.47-Gyr-old barites from North Pole, Australia, with maximum fractionations of 21.1/1000, about a mean of 11.6/1000, clearly indicating microbial sulphate reduction. Our results extend the geological record of microbial sulphate reduction back more than 750 million years, and represent direct evidence of an early specific metabolic pathway--allowing time calibration of a deep node on the tree of life.  相似文献   

17.
Schultz PH  Staid MI  Pieters CM 《Nature》2006,444(7116):184-186
Samples of material returned from the Moon have established that widespread lunar volcanism ceased about 3.2 Gyr ago. Crater statistics and degradation models indicate that last-gasp eruptions of thin basalt flows continued until less than 1.0 Gyr ago, but the Moon is now considered to be unaffected by internal processes today, other than weak tidally driven moonquakes and young fault systems. It is therefore widely assumed that only impact craters have reshaped the lunar landscape over the past billion years. Here we report that patches of the lunar regolith in the Ina structure were recently removed. The preservation state of relief, the number of superimposed small craters, and the 'freshness' (spectral maturity) of the regolith together indicate that features within this structure must be as young as 10 Myr, and perhaps are still forming today. We propose that these features result from recent, episodic out-gassing from deep within the Moon. Such out-gassing probably contributed to the radiogenic gases detected during past lunar missions. Future monitoring (including Earth-based observations) should reveal the composition of the gas, yielding important clues to volatiles archived at great depth over the past 4-4.5 Gyr.  相似文献   

18.
Iron formations are chemical sedimentary rocks comprising layers of iron-rich and silica-rich minerals whose deposition requires anoxic and iron-rich (ferruginous) sea water. Their demise after the rise in atmospheric oxygen by 2.32?billion years (Gyr) ago has been attributed to the removal of dissolved iron through progressive oxidation or sulphidation of the deep ocean. Therefore, a sudden return of voluminous iron formations nearly 500?million years later poses an apparent conundrum. Most late Palaeoproterozoic iron formations are about 1.88?Gyr old and occur in the Superior region of North America. Major iron formations are also preserved in Australia, but these were apparently deposited after the transition to a sulphidic ocean at 1.84?Gyr ago that should have terminated iron formation deposition, implying that they reflect local marine conditions. Here we date zircons in tuff layers to show that iron formations in the Frere Formation of Western Australia are about 1.88?Gyr old, indicating that the deposition of iron formations from two disparate cratons was coeval and probably reflects global ocean chemistry. The sudden reappearance of major iron formations at 1.88?Gyr ago--contemporaneous with peaks in global mafic-ultramafic magmatism, juvenile continental and oceanic crust formation, mantle depletion and volcanogenic massive sulphide formation--suggests deposition of iron formations as a consequence of major mantle activity and rapid crustal growth. Our findings support the idea that enhanced submarine volcanism and hydrothermal activity linked to a peak in mantle melting released large volumes of ferrous iron and other reductants that overwhelmed the sulphate and oxygen reservoirs of the ocean, decoupling atmospheric and seawater redox states, and causing the return of widespread ferruginous conditions. Iron formations formed on clastic-starved coastal shelves where dissolved iron upwelled and mixed with oxygenated surface water. The disappearance of iron formations after this event may reflect waning mafic-ultramafic magmatism and a diminished flux of hydrothermal iron relative to seawater oxidants.  相似文献   

19.
The evolution of the Earth's atmosphere is marked by a transition from an early atmosphere with very low oxygen content to one with an oxygen content within a few per cent of the present atmospheric level. Placing time constraints on this transition is of interest because it identifies the time when oxidative weathering became efficient, when ocean chemistry was transformed by delivery of oxygen and sulphate, and when a large part of Earth's ecology changed from anaerobic to aerobic. The observation of non-mass-dependent sulphur isotope ratios in sedimentary rocks more than approximately 2.45 billion years (2.45 Gyr) old and the disappearance of this signal in younger sediments is taken as one of the strongest lines of evidence for the transition from an anoxic to an oxic atmosphere around 2.45 Gyr ago. Detailed examination of the sulphur isotope record before 2.45 Gyr ago also reveals early and late periods of large amplitude non-mass-dependent signals bracketing an intervening period when the signal was attenuated. Until recently, this record has been too sparse to allow interpretation, but collection of new data has prompted some workers to argue that the Mesoarchaean interval (3.2-2.8 Gyr ago) lacks a non-mass-dependent signal, and records the effects of earlier and possibly permanent oxygenation of the Earth's atmosphere. Here we focus on the Mesoarchaean interval, and demonstrate preservation of a non-mass-dependent signal that differs from that of preceding and following periods in the Archaean. Our findings point to the persistence of an anoxic early atmosphere, and identify variability within the isotope record that suggests changes in pre-2.45-Gyr-ago atmospheric pathways for non-mass-dependent chemistry and in the ultraviolet transparency of an evolving early atmosphere.  相似文献   

20.
Structures resembling remarkably preserved bacterial and cyanobacterial microfossils from about 3,465-million-year-old Apex cherts of the Warrawoona Group in Western Australia currently provide the oldest morphological evidence for life on Earth and have been taken to support an early beginning for oxygen-producing photosynthesis. Eleven species of filamentous prokaryote, distinguished by shape and geometry, have been put forward as meeting the criteria required of authentic Archaean microfossils, and contrast with other microfossils dismissed as either unreliable or unreproducible. These structures are nearly a billion years older than putative cyanobacterial biomarkers, genomic arguments for cyanobacteria, an oxygenic atmosphere and any comparably diverse suite of microfossils. Here we report new research on the type and re-collected material, involving mapping, optical and electron microscopy, digital image analysis, micro-Raman spectroscopy and other geochemical techniques. We reinterpret the purported microfossil-like structure as secondary artefacts formed from amorphous graphite within multiple generations of metalliferous hydrothermal vein chert and volcanic glass. Although there is no support for primary biological morphology, a Fischer--Tropsch-type synthesis of carbon compounds and carbon isotopic fractionation is inferred for one of the oldest known hydrothermal systems on Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号