首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
以均匀设计法安排试验,对大豆油在酯交换反应下制备生物柴油的工艺进行了研究.为获得最优制备工艺参数,考查了n(醇)∶n(油)(3∶1~8∶1)、催化剂质量分数(0.4%~1.4%)、反应温度为(45~70℃)、反应时间(40~140min)及其交互作用对生物柴油产率和原料转化率的影响.结果表明:n(醇)∶n(油)、催化剂用量可显著地影响生物柴油的产率和原料转化率.同时甲醇与反应温度、催化剂与反应时间之间存在对抗效应,而甲醇与反应时间、催化剂与反应温度、反应温度与反应时间之间则存在协同作用.利用回归分析和BP神经网络,确定最优工艺参数为:n(醇)∶n(油)=6∶1;催化剂质量分数1.0%;反应温度45℃;反应时间30min.经液相色谱仪测定,生物柴油产率高达97.6%.  相似文献   

2.
以Amberlyst-15为催化剂,双氧水氧化叔丁醇制备了叔丁基过氧化氢(TBHP)和二叔丁基过氧化物(DTBP),系统考察了温度、反应时间、催化剂用量和原料配比对反应的影响.在叔丁醇与双氧水的物质的量之比为0.6,叔丁醇与Amberlyst-15的质量比为15,反应温度为83℃,反应时间为4h的条件下,叔丁醇的转化率可达到92.7%,TBHP和DTBP的产率分别为79.5%和13.2%;Amberlyst-15循环使用8次后,叔丁醇的转化率、TBHP和DTBP的产率基本保持不变.  相似文献   

3.
以神华煤为原料,四氢萘为溶剂,在微型反应釜中进行了神华煤加氢液化动力学研究,并建立了动力学模型.研究结果表明:在反应起始阶段,煤主要转化为前沥青烯和沥青烯,有少量油气存在.随反应时间的延长,前沥青烯和沥青烯产率出现最大值,油气产率逐渐增加.所建立的动力学模型能合理拟合350~440℃范围内神华煤液化动力学过程,其反应速率常数为0.001 8~0.041 6 min~(-1),表观活化能为29.11~46.45 kJ/mol.  相似文献   

4.
采用大豆油在固体碱催化剂作用下与甲醇发生酯交换反应制备生物柴油,研究了醇油物质的量比、催化剂质量分数、反应时间、反应温度对反应产率的影响。实验结果表明,醇油物质的量比为6:1、催化剂质量分数1%、反应时间1h、反应温度600℃为最优操作因素。  相似文献   

5.
利用环氧丙烷废液常压下制备丙二醇,对影响转化率的原料配比,反应温度和反应时间以及催化剂的用量进行了研究,得到最佳反应条件为:物料配比为3:1,反应温度为70℃,反应时间为6小时,催化剂的量是二氯丙烷物质量的0.05倍.在此条件下的最高收率能够达到77.46%.  相似文献   

6.
以甲醇和大豆油为原料,以固体酸为催化剂,通过酯交换反应制备生物柴油.考察了反应时间、反应温度、催化剂用量和醇油摩尔比各单因素对生物柴油产率的影响,得到最佳工艺条件:反应时间3.5 h,反应温度70℃,催化剂用量为大豆油质量的6.0%,醇油摩尔比为7:1,生物柴油产率可达93.5%.  相似文献   

7.
餐饮废油制生物柴油最优反应条件的研究   总被引:1,自引:0,他引:1  
利用餐饮废油制取生物柴油,采用气相色谱对产品进行了定性分析.在实验过程中,考察了醇油比、催化、用量、反应温度、反应时间对产品产率的影响.结果表明:用正己烷为溶剂,醇油比为8∶1、催化剂氢氧化钠用量为废油质量的1.0 %、反应温度50 ℃、反应时间60 min为最有反应条件,该条件下得到生物柴油的产率为90.1 %.  相似文献   

8.
本文对缩合法制备羟乙基亚胺二乙酸的反应温度、反应时间、反应波的pH值和原料配比进行了研究,优选出了较好的反应条件,产率为825%~91.0%。  相似文献   

9.
氯化锡催化合成苯甲酸乙酯的研究   总被引:1,自引:0,他引:1  
以苯甲酸和无水乙醇为原料,采用氯化锡(SnCl4·5H2O)作催化剂合成苯甲酸乙酯,考察了催化剂用量、原料配比和反应时间等因素对反应产率的影响.确定了氯化锡作为催化剂的最佳反应条件:n苯甲酸∶n无水乙醇∶n氯化锡=1∶4∶0.01;反应温度为88℃;反应时间为60min;转化率(以苯甲酸计)可达93.5%.  相似文献   

10.
本文研究了煤的加氢液化反应,考察了从中试装置得到的循环油催化预加氢和含硫化氢的反应气体对煤液化的影响,得到如下结果: 1.循环油预加氢后能使煤的液化转化率提高约10%。最佳条件为435℃,H_2冷压90巴和30分钟,煤的转化率可达80%,其中沥青烯产率50%,油产率28%,气体产率2%。若在此条件下再添加钴-铝催化剂,油产率可增加到42%。2.H_2S与H_2、CO和Ar混合对煤液化有促进作用,煤的转化率比单独用H_2、CO和Ar高5—10%。3.讨论了煤加氧液化机理。对煤→沥青烯→油这一简化的反应方程式计算了反应速度常数K_1,K_2和活化能E_1,E_2。E_1 16大卡/摩尔,E_3 24大卡/摩尔,与文献符合。  相似文献   

11.
在磁力搅拌高压釜内进行了文题的研究。考察了五种石油加工工业催化刺单独和混合使用时,对煤加氢液化的影响。发现加氢裂解催化剂和加氢精制催化剂按1:1混合使用,可获得较高的煤转化率和油产率,氢耗也较低。进一步研究表明,该混合催化剂适于在较低温度下使用,最佳液化温度随其它操作参数变化。当有催化剂存在时氢压对转化率的影响比无催化剂时显著。催化剂用量增大对液化有利,但操作成本增加。  相似文献   

12.
通过对高温、高压下盂县烟煤直接液化试验所得产物的分析,发现在加入我国自行研制的高分散铁系催化剂后,也能获得较高的油收率和煤转化率(分别为51.73%和83.9%)。本次试验液化单元的H2耗量仅为6.12%,低于国外典型的煤液化工艺,具有成本优势,而且实验装置的生产能力增高。在反应压力方面,本次试验压力仅为19MP,反应条件更加温和,对实验设备的耐压要求也进一步降低,安全性更加保证,并且反应的运行成本也显著降低。  相似文献   

13.
用三口瓶作反应器,先加入稀盐酸与铁粉反应生成氯化亚铁,确定了反应过程中盐酸浓度(质量)为18%(1:1)、温度为85℃、盐酸与铁粉的质量比为1.4:1、反应时间为20min的最佳制备条件;再加入稀盐酸,在酸性条件下用双氧水将氯化亚铁氧化成氯化铁,确定了反应过程中搅拌速度为20、双氧水与铁粉质量比为1.63:1、温度为55℃、双氧水加入速度为0.5~1.0mL/min的最佳氧化条件。  相似文献   

14.
以神府煤为原料,研究了用硫化氢作氢源在间歇式高压反应釜中进行煤液化过程的可能性.重点考察了气体中H2S(硫化氢)的含量、催化剂种类对煤转化率的影响,并对S在液化油及残渣中的分布以及油品的组成进行了分析.实验结果表明:在氢源中加入H2S或全部以H2S取代时,煤液化条件在趋于温和化的同时转化率均有不同程度的提高,其中H2S加入量在20%~50%时,转化率可由原来的62%提高到70%左右.实验中还对单独以H2S作为氢源进行液化的催化剂效果进行了比较,发现FeS催化效果高于氧化物催化剂.  相似文献   

15.
以乙烯裂解副产C9馏分为原料,采用热聚合反应C9制备石油树脂.探讨了反应时间、反应温度和反应压力对石油树脂收率、色度的影响.树脂的收率随着反应时间的延长和反应温度的升高而增大,当反应温度超过240℃,反应时间超过8h后,石油树脂的收率趋于稳定;随着反应时间的延长,树脂的软化点逐渐降低,树脂的色度逐渐增大.综合分析得适宜的C9石油树脂制备工艺条件为:反应时间8h,反应温度230℃,反应压力0.6MPa.  相似文献   

16.
制备了具有酸性功能的离子液体[Hnmp]HSO4,并用其催化菜籽油酯交换制备生物柴油.该离子液体表现出良好的催化活性及稳定性.在醇油比为8∶1、反应温度(100±2)℃、反应时间5h和[Hnmp]HSO4的用量为菜籽油质量的8%时,生物柴油收率可达85.4%.并且该离子液体有较好的稳定性,循环使用4次后仍有较高的催化性能.  相似文献   

17.
煤液化技术在当前我国的石油供需形势下尤为重要,其中动力学的研究对于煤液化理论的拓展有重要的指导意义。充分考虑了煤液化过程中可逆反应的存在,基于集总动力学的方法,提出了神华煤直接液化反应动力学模型,并采用了引入多重退火交叉策略的遗传算法估算参数值。通过估算值与实验值相比较,平均相对误差均小于10%。表明该遗传算法对于集总动力学参数的估值很有优势,而且所提出的动力学模型反应网络也具有一定的合理性和适用性。  相似文献   

18.
以水杨酸、苯酚和三氯氧磷为原料间接法合成了水杨酸苯酯,研究了反应温度、反应时间、原料配比等条件对合成反应的影响,确定了最佳工艺条件.合成水杨酸苯酯的最佳工艺条件是:反应温度80℃、反应时间2.5h,n(水杨酸):n(苯酚)为1:1.25,n(水杨酸):n(三氯氧磷)为l:0.58,水杨酸苯酯的产率可达到95.71%以上,纯度达到98.5%.  相似文献   

19.
冰乙酸和烯丙醇反应制得了乙酸烯丙酯,然后,用过氧化氢水溶液氧化合成了一乙酸甘油酯.讨论了反应原料配比、反应温度及时间等对一乙酸甘油酯收率的影响.研究结果表明,当原料配比为n(乙酸烯丙酯)∶n(过氧化氢)∶n(钨酸钠)1:2:0.04,在30℃的条件下,恒温反应8 h,产品收率可达66.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号