首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
关联规则挖掘是数据挖掘中的研究的一个非常重要的分支,主要用于发现隐藏在数据库中数据的联系和一些有趣的规律。本文给出了关联规则概念及相关术语的定义,并阐述了关联规则Apriori算法以及对Apriori算法进行了举例与性能分析。  相似文献   

2.
赵祖应  丁勇  邓平 《江西科学》2012,30(1):96-98
数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。IT就业市场竞争已经相当激烈,而数据处理的核心技术——数据挖掘更是得到了前所未有的重视。关联规则一般用以发现交易数据库中不同商品(项)之间的联系,用这些规则找出顾客的购买行为模式,比如购买了某一种商品对购买其他商品的影响,这种规则可以应用于超市商品货架设计、货物摆放以及根据购买模式对用户进行分类等。通过发现这个关联的规则,可以更好地了解和掌握事物的发展、动向等。在市场营销、企业投资中具有重要的作用。  相似文献   

3.
关联规则是数据挖掘的一个重要研究内容,主要用于从大量数据集中挖掘出有价值的数据项之间的关联关系.典型案例是超市的购物篮分析,主要对顾客的购买记录数据库进行关联规则挖掘,可以发现顾客的购买行为.本文依据Apriori算法的两个基本性质,即任何大项集的子集一定是大项集,非大项集的超集一定是非大项集,对经典的Apriori算法要多次扫面事务数据库的问题,作了一些改进,并进行仿真计算,结果表明,改进的算法确实减少了扫描次数.  相似文献   

4.
针对Apriori算法存在多次扫描数据库及产生大量候选项集的缺陷,提出了一种改进算法.该算法只需扫描数据库一次,并将事务变换成二进制存储到数据库,可节省存储空间、提高速度.实验结果表明,改进算法挖掘关联规则的效率有较大提高.  相似文献   

5.
关联规则Apriori算法的改进   总被引:7,自引:0,他引:7  
Apriori算法是关联规则提取的经典算法,但存在一些不足之处。关联算法的研究主要集中在提高Apriori算法的效率上。本文分析了该算法并进行了改进,使得频繁集产生的同时精简事务集。这种算法及时去掉了不必要的数据,减少了数据运算,从而使算法更优化。  相似文献   

6.
关联规则Apriori改进算法   总被引:1,自引:0,他引:1  
在分析关联规则和Apriori算法原理的基础上,针对Apriori算法瓶颈提出一种改进算法,该算法直接产生项数最大频繁项目集.改进算法访问的数据量明显减少,尤其适用于只寻找项数最大的频繁项目集的情况,尤其适用于稀疏数据.实验结果表明改进算法提高了算法效率,改善了算法的性能.  相似文献   

7.
概念格通过概念的内涵和外延及泛化和例化之间的关系来表示知识,因而适用于从数据库中挖掘规则的问题描述;在概念格的内涵中引入等价关系并将其外延量化,得到量化概念格;利用量化概念格挖掘关联规则,与采用Apriori算法计算频繁项目集获取关联规则相比较,不需要计算频繁项目集,容易获得用户感兴趣的关联规则,同时减少了大量冗余的规则,提高了挖掘效率。  相似文献   

8.
关联规则挖掘Apriori算法研究   总被引:1,自引:0,他引:1  
随着收集和存储在数据库中的数据规模越来越大,人们对从这些数据中挖掘出相应的联知识愈来愈感兴趣,关联规则一个典型的应用实例就是市场购物分析.本文介绍了关联分析的概念Apriori算法及其改进技术,对Apriori算法地优缺点进行了评价.  相似文献   

9.
一种基于分类的关联规则Apriori算法   总被引:2,自引:0,他引:2  
关联规则的Apriori算法,在频繁项集的过程中要多次扫描数据库,而事务数据库中含有较多的冗余数据,极大地影响了频繁项集的提取效率。针对这些问题,提出一种基于分类的Apriori算法,在频繁项集提取以前,用分类的方法去掉无关冗余数据。实验结果表明这种方法较好地提高了Apriori算法的性能,在实践中有一定的应用价值。  相似文献   

10.
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有意义的关联。随着大量数据不停的收集和存储,从数据库中挖掘关联规则显得越来越有必要性,关联规则挖掘的Apriori算法是数据库挖掘的最经典算法并得到广泛应用,在介绍关联规则挖掘和Apriori算法的基础上,发现Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。综述了Apriori算法的主要优化方法,并指出了Apriori算法在实际中的应用领域,提出了未来Apriori算法的研究方向和应用发展趋势。  相似文献   

11.
分析了关联规则挖掘的各种算法,详尽分析和探讨了一种用于挖掘关联规则的矩阵算法并给出了矩阵算法实现过程.矩阵算法扫描数据库一次,然后生成事务矩阵,在矩阵上进行相关的数据挖掘操作.当数据库规模较大时,矩阵算法能够显著提高关联规则挖掘的效率.  相似文献   

12.
Apriori是挖掘关联规则最经典的算法之一,针对该算法存在的瓶颈问题研究了基于MapReduce编程框架的简单Apriori并行算法;并在简单Apriori并行算法的基础上提出一种采用固定多阶段结合挖掘策略的改进算法——多阶段并行算法。实验结果表明,改进算法能缩短挖掘时间,提高执行的效率。  相似文献   

13.
本文用改进的Apriori算法来减少基于输入输出的最小决策规则集,它由混合模糊聚类自动生成的隶属函数和规则构建而成。自适应模糊推理引擎采用最小二乘法和共轭梯度下降算法以实现用最少的规则集,从而得到更好的性能。  相似文献   

14.
卢红杰 《科学技术与工程》2012,12(26):6817-6822
对关联规则挖掘的经典Apriori算法进行了深入细致研究。在Visual FoxPro环境下,通过编程实现了经典的Apriori算法,完成了对辽宁石油化工大学近十年来图书借阅数据的关联规则挖掘,得出了专业图书间的借阅关联关系。为预测读者的借阅倾向、辅助采购决策、主动推送相关信息等服务提供了较为翔实的数据支持。  相似文献   

15.
本文重点研究了关联规则经典算法Apriori算法的基本思想,并通过实例说明发现频繁项集的方法,提出了Apriori算法的不足,并结合spss clementine软件将关联挖掘应用于某超市的销售数据,从大类及二级类商品之间两个方面进行挖掘,针对挖掘结果进行了分析,同时提出建议,为超市提供辅助决策信息.  相似文献   

16.
Apriori算法在客户关系管理中的应用   总被引:1,自引:0,他引:1  
在一个竞争的环境下,客户关系对企业而言是至关重要的。提供客户所需要的,满意的个性化服务,是客户关系管理的主要内容。Apriori算法作为主要的数据挖掘算法之一在客户关系管理中得以广泛应用,本文主要介绍了Apriori算法含义及其相关概念,着重研究了该算法的实现及其在实际的客户关系管理系统中是如何运用的,对客户关系管理系统的开发和实现具有现实意义。  相似文献   

17.
当前高职院校的课程设置既要给学生打下坚实的专业基础又要符合社会各用人单位的需求,所以找到一个合理可行的课程设置方法显得尤为重要。用数据挖掘理论中APriori关联算法以期找出课程之间的关联可以为高职院校的课程设置提供一定的理论依据。  相似文献   

18.
一种改进的Apriori算法   总被引:1,自引:0,他引:1  
Apriori算法存在许多可以改进的地方.例如它需要反复读取数据库,并且读取的次数由项目集中的项目个数来确定,I/O负载与最大项目集的项数成正比.本文提出一种只读一次数据库的的改进算法.  相似文献   

19.
关联规则在教学管理决策支持中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
运用数据挖掘中的关联规则分析了教学管理中教师信息之间的隐藏关系.并对数据进行了标准化、离散化处理,采用优化的Apriori算法进行数据挖掘.通过事例分析了教师的教学工作量和发表论文之间的隐含关系,可为教学管理提供决策支持.  相似文献   

20.
关联规则是数据挖掘领域中最重要的研究内容,能够在数据库中发现频繁模式和关联知识。对关联规则及其相关挖掘算法Apriori进行了分析,指出了Apriori算法存在的缺点。通过基于预处理的改进Apriori算法在高校教学评价中的应用,说明数据挖掘过程,分析挖掘结果,最后指出了未来的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号