共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
关联规则是数据挖掘的一个重要研究内容,主要用于从大量数据集中挖掘出有价值的数据项之间的关联关系.典型案例是超市的购物篮分析,主要对顾客的购买记录数据库进行关联规则挖掘,可以发现顾客的购买行为.本文依据Apriori算法的两个基本性质,即任何大项集的子集一定是大项集,非大项集的超集一定是非大项集,对经典的Apriori算法要多次扫面事务数据库的问题,作了一些改进,并进行仿真计算,结果表明,改进的算法确实减少了扫描次数. 相似文献
3.
数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。IT就业市场竞争已经相当激烈,而数据处理的核心技术——数据挖掘更是得到了前所未有的重视。关联规则一般用以发现交易数据库中不同商品(项)之间的联系,用这些规则找出顾客的购买行为模式,比如购买了某一种商品对购买其他商品的影响,这种规则可以应用于超市商品货架设计、货物摆放以及根据购买模式对用户进行分类等。通过发现这个关联的规则,可以更好地了解和掌握事物的发展、动向等。在市场营销、企业投资中具有重要的作用。 相似文献
4.
针对Apriori算法存在多次扫描数据库及产生大量候选项集的缺陷,提出了一种改进算法.该算法只需扫描数据库一次,并将事务变换成二进制存储到数据库,可节省存储空间、提高速度.实验结果表明,改进算法挖掘关联规则的效率有较大提高. 相似文献
5.
关联规则Apriori改进算法 总被引:1,自引:0,他引:1
在分析关联规则和Apriori算法原理的基础上,针对Apriori算法瓶颈提出一种改进算法,该算法直接产生项数最大频繁项目集.改进算法访问的数据量明显减少,尤其适用于只寻找项数最大的频繁项目集的情况,尤其适用于稀疏数据.实验结果表明改进算法提高了算法效率,改善了算法的性能. 相似文献
6.
关联规则Apriori算法的改进 总被引:7,自引:0,他引:7
杨晓平 《浙江海洋学院学报(自然科学版)》2006,25(2):176-182,195
Apriori算法是关联规则提取的经典算法,但存在一些不足之处。关联算法的研究主要集中在提高Apriori算法的效率上。本文分析了该算法并进行了改进,使得频繁集产生的同时精简事务集。这种算法及时去掉了不必要的数据,减少了数据运算,从而使算法更优化。 相似文献
7.
概念格通过概念的内涵和外延及泛化和例化之间的关系来表示知识,因而适用于从数据库中挖掘规则的问题描述;在概念格的内涵中引入等价关系并将其外延量化,得到量化概念格;利用量化概念格挖掘关联规则,与采用Apriori算法计算频繁项目集获取关联规则相比较,不需要计算频繁项目集,容易获得用户感兴趣的关联规则,同时减少了大量冗余的规则,提高了挖掘效率。 相似文献
8.
关联规则挖掘Apriori算法研究 总被引:1,自引:0,他引:1
随着收集和存储在数据库中的数据规模越来越大,人们对从这些数据中挖掘出相应的联知识愈来愈感兴趣,关联规则一个典型的应用实例就是市场购物分析.本文介绍了关联分析的概念Apriori算法及其改进技术,对Apriori算法地优缺点进行了评价. 相似文献
9.
一种基于分类的关联规则Apriori算法 总被引:2,自引:0,他引:2
关联规则的Apriori算法,在频繁项集的过程中要多次扫描数据库,而事务数据库中含有较多的冗余数据,极大地影响了频繁项集的提取效率。针对这些问题,提出一种基于分类的Apriori算法,在频繁项集提取以前,用分类的方法去掉无关冗余数据。实验结果表明这种方法较好地提高了Apriori算法的性能,在实践中有一定的应用价值。 相似文献
10.
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有意义的关联。随着大量数据不停的收集和存储,从数据库中挖掘关联规则显得越来越有必要性,关联规则挖掘的Apriori算法是数据库挖掘的最经典算法并得到广泛应用,在介绍关联规则挖掘和Apriori算法的基础上,发现Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。综述了Apriori算法的主要优化方法,并指出了Apriori算法在实际中的应用领域,提出了未来Apriori算法的研究方向和应用发展趋势。 相似文献
11.
Apriori是挖掘关联规则最经典的算法之一,针对该算法存在的瓶颈问题研究了基于MapReduce编程框架的简单Apriori并行算法;并在简单Apriori并行算法的基础上提出一种采用固定多阶段结合挖掘策略的改进算法——多阶段并行算法。实验结果表明,改进算法能缩短挖掘时间,提高执行的效率。 相似文献
12.
Apriori算法是关联规则挖掘中最经典的算法,但它存在两大致命缺陷:需多次扫描数据库和产生海量的候选项目集。从这两个角度出发改进算法,提出了一种基于模式矩阵的高效改进算法(简称P-Matrix算法),使扫描数据库的次数减少为一次,同时不产生候选项目集而直接产生频繁项目集,从而使算法的时间复杂度和空间复杂度大大减少,有效地提高了Apriori算法的效率。 相似文献
13.
营养作为人类生活的必要前提,大量患有某种疾病患者或由于工作职业原因对不同营养成分需求各不一致,发现不同食物种类营养成分及含量间的关系具有较强的应用价值。由于各类食物类别所含食物数量不同,针对Apriori算法通过支持度和置信度来衡量关联规则的特点,为克服各类食物数量不一致容易对挖掘结果产生不良影响,设计了一种通过k-means与Apriori算法对多种食物的营养成分及含量的挖掘与分析的方法。首先根据不同食物营养成分含量采用k-means聚类算法进行聚类,将食物数据集划分出了多个互不相交的"簇",再在各"簇"内通过Apriori算法实现食物营养成分含量之间的关联规则挖掘,其结果表明使用该方法经过聚类后的同一簇内食物营养成分关联程度明显优于直接在数据集中使用Apriori算法进行挖掘,为各类人群的合理膳食及饮食健康提供了重要的参考依据。 相似文献
14.
针对Apriori算法的不足,提出了一种新的优化算法——IApriori.该算法应用散列技术优化产生频繁-2项集,优化连接操作减少连接判断的次数,通过对候选项集编码来减少扫描数据库的次数,优化逻辑"与"运算减少不必要的"与"操作次数,缩短生成频繁项集的时间.IApriori算法仅需3次扫描数据库.研究结果表明,该算法具有快速、直观、节省内存等优点. 相似文献
15.
Apriori算法是经典的数据挖掘算法之一,它根据置信度和支持度对产生的频繁集进行选择,找出强规则.传统的Apriori算法需要产生大量的侯选集和多次数据库的扫描,存储和通信的开销巨大.云计算环境可以解决存储问题,所以针对Mapreduce的编程框架,提出一种适用于此模式的新关联规则算法,解决传统Apriori算法时间和空间上的缺点,提高挖掘效率. 相似文献
16.
采用数据挖掘的方法,在装配式建筑质量的文献中提取影响因素,利用Apriori算法得到筛选后的关键指标并分析。研究发现,基于大数据能够减少人为因素对指标选取的干扰,并通过寻找影响因素和装配式建筑质量的相关关系,可得到更具普遍性的规律。在5M1E分析法的影响因素中,“法”的影响因素支持度较大,表明该板块包含的影响因素对装配式建筑的质量有更显著的影响。通过置信度分析,提出使用强关联规则分析,并发现“构件生产企业的标准化程度”不仅具有较高的支持度,在关联因素中出现的频率也最高,从而提出建议并为合理评价质量影响因素及制定管理措施提供有效参考。 相似文献
17.
一种基于Apriori的高效关联规则挖掘算法的研究 总被引:1,自引:0,他引:1
为了从海量的信息资源库中进行析取、识别和发现潜在正确和有用、前所未知的、最终可理解的知识,从数据挖掘技术的研究入手,对关联规则挖掘算法Apriori算法的关键思想以及性能进行了研究,在此基础上分析和探讨了Apriori Mend算法,并给出了该算法的实现思想和步骤,同时通过实例说明了算法的执行过程,该算法提高了原算法的效率. 相似文献
18.
钟晓桢 《江汉大学学报(自然科学版)》2007,35(3):59-63
在数据库中挖掘关联规则是数据挖掘领域的一个重要的研究课题,在应用中具有非常重要的意义.在分析Apriori算法和IUA算法经典关联规则挖掘算法的基础上,提出了一种基于最近挖掘结果的更新算法称为IIUA.IIUA算法吸收了Apriori算法和IUA算法的优点,在改变最小支持度和基于最近挖掘结果的条件下,从生成尽可能少的候选项集考虑,得到完整的新频繁项集,从而提高算法的效率. 相似文献