共查询到19条相似文献,搜索用时 62 毫秒
1.
针对视频序列中人体行为检测的问题,提出一种基于边界敏感网络的时序行为候选生成算法,在原有边界敏感网络的基础上通过对时序评估模块和候选评估模块引入更深层的卷积神经网络,进而对视频特征有更好的表达。同时在后处理阶段,在NMS(non-maximum suppression)算法中引入新的置信度分数高斯加权衰减方法。实验结果表明,该算法可以有效提高行为检测问题中时序行为候选生成任务的召回率。在公开数据集Activity Net上,提出的方法在保证生成相同数量候选的同时有更高的平均召回率。 相似文献
2.
3.
对声学行为识别的研究目前主要依赖于特定用户的数据,且需要过滤异常值,导致较难获取可用于训练的数据集.提出了一种基于梅尔频谱图与Google AudioSet中提取的embedding的新策略,保证了模型的泛化能力,摆脱了依赖特定用户数据的限制.使用深度强化学习方法对11种常见室内行为进行识别,动态控制数据分布,解决数据不平衡问题.总体识别准确率达到87.5%,对每个行为的识别准确率均超过了83%. 相似文献
4.
近年来卷积神经网络(convolutional neural network,CNN)在行为识别任务中取得了较大的进展.然而,现有的神经网络方法往往只注重高层语义信息的利用,对浅层特征信息挖掘利用不够.针对这一问题,提出一种基于3D卷积(convolution 3D,C3D)的多尺度3D卷积神经网络的行为识别方法.该方法受到特征金字塔结构的启发,在原C3D的基础上融合C3D的浅层特征信息,实现端到端的行为识别.同时该方法以现有的深度学习理论为基础,利用迁移学习的思想,将C3D和该方法中相同模块部分的参数迁移到本方法中,以降低模型的训练时间.通过在UCF101数据集上进行实验,实验结果表明,提出行为识别方法的分类精度达到84.56%,分类效果优于原C3D分类网络. 相似文献
5.
针对传统识别算法对信号的先验知识要求较高、人工特征提取复杂、低信噪比环境下识别率较低等问题,提出了一种基于时序卷积网络(TCN)的卷积码参数识别方法.引入了深度学习算法处理盲识别问题,依据卷积码的马尔可夫性,将码字作为时间序列处理,把已知类型的编码序列作为时序卷积网络模型的输入进行监督学习,根据训练好的模型对接收端接收到的未知编码信号进行闭集识别分类.实验结果表明:当信噪比大于5 dB时,单一参数类型与混合参数类型平均识别准确率分别大于99.60%和99.50%,且在相关算法对比中有较好的识别表现. 相似文献
6.
运动信息对行为识别任务至关重要。现有方法仅利用了局部运动信息,忽略了全局运动信息的重要作用。为解决该问题,提出了一种基于低秩分解与多流融合的行为识别方法。通过3条支路分别提取视频的特征,第1条支路利用低秩分解提取全局运动信息;第2条支路提取视频的光流特征以得到局部运动信息;第3条支路利用原始视频作为输入,以保留完整的空域信息。将3条支路的预测结果进行后融合,得到最终的行为识别结果。通过多流融合,充分利用视频的多尺度时域运动信息和丰富的空域信息,提高现有模型的行为识别能力。实验结果表明,提出的方法优于现有模型的多流融合行为识别方法。 相似文献
7.
8.
时序网络中的重要节点评估一直是社交网络领域中的热门话题,在病毒传播、信息挖掘等方面有着诸多应用。现有的算法虽然考虑到节点的邻居信息对节点产生的影响,但建模时仅仅考虑节点是否存在关系,对于链接强度的考虑不够全面。针对此问题,从时间层面去考虑节点链接强度,提出一种新的层内邻接矩阵。同时,综合考虑节点自身的邻居和跨层节点的公共邻居来衡量层间耦合关系,提出多指标交互算法;其次,构建加权超邻接模型(WSAM);最后,通过计算时序网络中每个时间层节点的特征向量中心性来评估时序网络中节点的重要性。实验结果表明,TWCR算法在时序最大连通分量、网络性能、容错性三个方面优于SAM、SSAM和WPA方法。 相似文献
9.
针对目前矿工行为数据集构建不全面、行为识别实时性较差、对相似行为的细粒性识别精度较低等问题,提出了一种端到端的自主学习行为特征并实现行为分类的识别方法.首先,对原始矿工行为视频进行特征提取,生成用来描述时间特征的光流图以及可以描述空间特征的三原色(RGB)图像,使用双流网络对提取的特征进行学习并得到行为分类结果;然后,... 相似文献
10.
随着社会的不断发展,机器视觉系统在各行业已被广泛应用,基于目标检测与目标识别的图像处理方法在机器系统中有了主要的应用途径,总结近年来使用机器视觉研究中用到的目标识别方法,包括Blob分析法、模板匹配法、深度学习法,详细讨论这些目标识别方法的原理、优劣以及在各个领域中的应用。首先介绍了基于机器视觉的目标检测识别的任务、难点和发展现状,其次基于深度学习方法的目标检测识别算法,最后讨论当前实际应用中目标检测识别方法存在的问题和未来可能的发展方向。 相似文献
11.
为了解决在背景相似的篮球视频中提取特征级运动信息不充分和捕获长时序依赖关系困难等问题,从局部和全局的角度出发,提出一种混合运动激励和时序增强网络(mixed motion excitation and temporal enhancement network,MTE-Net),该网络由在时间建模上互补的混合运动激励(mixed motion excitation,MME)模块和时序增强(temporal enhancement,TE)模块构成。混合运动激励模块通过计算短距离视频帧之间混合的特征级差分来充分表征局部运动信息,并显性地对运动敏感通道进行激励。时序增强模块对长距离视频帧使用自注意力机制来构建时序关联函数并捕获时序之间的全局依赖关系,增强视频中的重要帧序列。在不额外引入光流和过多参数的情况下,在SpaceJam篮球动作数据集上的实验结果表明,与其他主流的动作识别算法相比,所提模型对篮球运动员动作识别的准确率更高。 相似文献
12.
视频特征的提取是行为识别方法中一个关键步骤,当视频场景中存在无关行人或者背景干扰时,提取的特征往往会包含较多的干扰信息,这将严重影响分类器的分类效果,进而影响行为识别准确率。针对这类问题,提出了一种基于显著性区域的红外行为识别方法。该方法对视频序列提取光流运动历史图(optical flow motion history image, OF-MHI)特征,获取视频序列的运动信息,此步骤旨在消除图像背景及静止目标干扰。利用类别激活映射(class activation map, CAM)方法进一步消除运动目标干扰,获得兴趣目标显著性区域,进而获得显著性区域特征图。输入卷积神经网络(convolutional neural network, CNN)提取最终特征,并采用支持向量机(support vector machine, SVM)获得识别结果。与传统方法相比,实验结果表明,该方法有效地提升了识别准确率。 相似文献
13.
针对现有机器人基于深度网络的地形识别方法准确率低、网络训练时间长且需要大量训练数据的问题,提出一种基于深度残差网络与迁移学习的地形识别方法。首先,基于Resnet网络构建一种深度残差网络;其次,利用现有Imagenet大型数据集对构建的深度残差网络进行预训练,作为预训练网络,保留预训练网络除全连接层的训练权重,实现预训练网络大规模的参数迁移;最后,利用自建地形图像数据集对深度残差网络的全连接层进行训练,实现深度残差网络微调。实验结果表明,通过迁移学习的方法,利用深度残差网络对石子路、水泥路、砖地、沥青、草地、泥地6种自建地形图像进行分类,平均准确率达到了99.3%,同时网络训练时间也显著降低。 相似文献
14.
为了解决传统方法容易受运动速率、光照情况、遮挡、复杂背景等的影响,导致识别结果鲁棒性较差的问题,通过特征提取方法研究了健美操分解动作图像自适应识别问题。通过时间能量金字塔把视频序列划分成若干段,得到结果中动作并非全为健美操动作,含大量干扰信息,通过背景消减法对进行健美操运动的人体目标进行提取,进行进一步处理,得到人体轮廓的二值图像序列,求出轮廓外界矩形宽度和高度之比,依据宽高比获取关键帧,通过拉普拉斯法求解相邻差异帧与间的光流,降低背景杂波产生的影响。针对关键帧提取特征向量,通过相似性检测对待识别健美操分解动作图像和提取特征进行匹配,设定相似性阈值,将相似性高于阈值的图像作为识别结果。结果表明:所提方法对单人健美操视频数据库的识别准确率高,仅存在一定程度的混淆;所提方法对含不同场景的复杂数据库的识别准确性和其它方法相比最高。可见所提方法受外界环境干扰小,可保证高识别精度。 相似文献
15.
王向慧 《长春工程学院学报(自然科学版)》2011,(3):113-117
在时空兴趣点以及3D-SIFT描述的基础上,采用概率主题模型进行动作识别,结果表明:概率主题模型不仅能够实现对视频中单个动作的识别,而且对复杂情况下的视频也有一定识别能力。 相似文献
16.
针对一般基于知识迁移的方法对未知视角不可用和难以扩展新数据的问题,提出一种基于非线性模型的无监督学习方法,即基于非线性知识迁移(nonlinear knowledge shift,NKS)的串联特征学习.提取密集动作轨迹,并利用通用码书编码;提取动作捕捉数据模拟点的密集轨迹,产生一个仿真数据的大型语料库来学习NKS,其中,轨迹提取前在视角方向上投影模拟点;再从真实视频中提取轨迹,用于训练和测试表示学习过程的轨迹,利用多类支持向量机分类串联特征.在两大通用人体动作识别数据库IXMAS和3D(N-UCLA)上验证了该方法的有效性,实验结果表明,在IXMAS数据集、不同摄像机情况下,该方法的识别精度高于同类方法至少3.5%,在3D(N-NCLA)数据集、双摄像头情况下,识别精度至少提高4.4%.在大部分动作识别中也取得最佳识别率,此外,该方法的训练时间可忽略不计,有望应用于在线人体动作识别系统. 相似文献
17.
针对手工制作关键帧检测器和最初“特征包”方法的局限性,提出一种基于Adaboost关键帧选择和多尺度运动特征表示的人体动作识别方法.首先,从视频序列中提取兴趣点,使用生物启发特征结合光流的多尺度方法提取运动特征;然后,利用Adaboost学习方法从一个大的特征池中选取最具辨识度的几帧图像,并将排列前十的Adaboost帧作为相应的关键帧;最后,利用相关图表示关键帧,由支持向量机(support vector machine,SVM)完成人体动作分类.在KTH、多视图IXMAS和TUM数据库上的实验结果显示,该方法在3个数据库上的识别精度可分别高达95.5%,93.7%和91.5%,识别性能明显优于其他几种较新的方法,表明利用Adaboost学习算法可有效选取每个视频动作序列的关键帧,并有效解决了“特征包”方法的局限性问题. 相似文献
18.
针对现有的人体行为识别方法中易受到噪声、光照以及复杂背景等因素的影响,同时,未充分考虑到人体交互区域的作用。提出一种结合普通彩色视频和深度信息的人体行为识别方法。首先,对于识别中提取人体运动目标时,利用深度图中物体表面法向量提取运动目标的边缘;同时结合加权累计帧差法获取运动模板。其次,结合深度连续性提取非人体区域(人体与动作的交互区域)并进行描述,作为人体行为表示的一部分。最后利用支持向量机(support vector machine)进行训练和识别。实验部分在CAD-120数据集中测试,通过与一些现有的人体行为识别方法相比较,动作识别准确率提高了5%左右。 相似文献
19.
针对现有行为识别算法在红外视频中表现不佳的问题,提出一种基于双通道特征自适应融合的红外行为识别算法.在该方法中,2个通道提取的特征分别是改进的密集轨迹特征和光流卷积神经网络特征.改进的密集轨迹特征是在原始密集轨迹特征中加入灰度值权重,强调红外视频的成像特征;光流卷积神经网络特征是在原始视频对应的光流图序列中提取的,该特征具有较强的全局描述能力.通过自适应融合模型将2个通道特征的概率输出进行自适应融合,得到最终识别结果.实验结果表明,在现有红外行为识别数据集上,该算法有效地提高了识别准确率. 相似文献