共查询到8条相似文献,搜索用时 0 毫秒
1.
Panizzi JR Becker-Heck A Castleman VH Al-Mutairi DA Liu Y Loges NT Pathak N Austin-Tse C Sheridan E Schmidts M Olbrich H Werner C Häffner K Hellman N Chodhari R Gupta A Kramer-Zucker A Olale F Burdine RD Schier AF O'Callaghan C Chung EM Reinhardt R Mitchison HM King SM Omran H Drummond IA 《Nature genetics》2012,44(6):714-719
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated. 相似文献
2.
The expression pattern and activity of fibroblast growth factor-8 (FGF8) in experimental assays indicate that it has important roles in limb development, but early embryonic lethality resulting from mutation of Fgf8 in the germ line of mice has prevented direct assessment of these roles. Here we report that conditional disruption of Fgf8 in the forelimb of developing mice bypasses embryonic lethality and reveals a requirement for Fgf8 in the formation of the stylopod, anterior zeugopod and autopod. Lack of Fgf8 in the apical ectodermal ridge (AER) alters expression of other Fgf genes, Shh and Bmp2. 相似文献
3.
Lee JE Silhavy JL Zaki MS Schroth J Bielas SL Marsh SE Olvera J Brancati F Iannicelli M Ikegami K Schlossman AM Merriman B Attié-Bitach T Logan CV Glass IA Cluckey A Louie CM Lee JH Raynes HR Rapin I Castroviejo IP Setou M Barbot C Boltshauser E Nelson SF Hildebrandt F Johnson CA Doherty DA Valente EM Gleeson JG 《Nature genetics》2012,44(2):193-199
Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction. 相似文献
4.
Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis 总被引:11,自引:0,他引:11
Clarke G Goldberg AF Vidgen D Collins L Ploder L Schwarz L Molday LL Rossant J Szél A Molday RS Birch DG McInnes RR 《Nature genetics》2000,25(1):67-73
The homologous membrane proteins Rom-1 and peripherin-2 are localized to the disk rims of photoreceptor outer segments (OSs), where they associate as tetramers and larger oligomers. Disk rims are thought to be critical for disk morphogenesis, OS renewal and the maintenance of OS structure, but the molecules which regulate these processes are unknown. Although peripherin-2 is known to be required for OS formation (because Prph2-/- mice do not form OSs; ref. 6), and mutations in RDS (the human homologue of Prph2) cause retinal degeneration, the relationship of Rom-1 to these processes is uncertain. Here we show that Rom1-/- mice form OSs in which peripherin-2 homotetramers are localized to the disk rims, indicating that peripherin-2 alone is sufficient for both disk and OS morphogenesis. The disks produced in Rom1-/- mice were large, rod OSs were highly disorganized (a phenotype which largely normalized with age) and rod photoreceptors died slowly by apoptosis. Furthermore, the maximal photoresponse of Rom1-/- rod photoreceptors was lower than that of controls. We conclude that Rom-1 is required for the regulation of disk morphogenesis and the viability of mammalian rod photoreceptors, and that mutations in human ROM1 may cause recessive photoreceptor degeneration. 相似文献
5.
Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning 总被引:13,自引:0,他引:13
During limb outgrowth, signaling by bone morphogenetic proteins (BMPs) must be moderated to maintain the signaling loop between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Gremlin, an extracellular Bmp antagonist, has been proposed to fulfill this function and therefore be important in limb patterning. We tested this model directly by mutating the mouse gene encoding gremlin (Cktsf1b1, herein called gremlin). In the mutant limb, the feedback loop between the ZPA and the AER is interrupted, resulting in abnormal skeletal pattern. We also show that the gremlin mutation is allelic to the limb deformity mutation (ld). Although Bmps and their antagonists have multiple roles in limb development, these experiments show that gremlin is the principal BMP antagonist required for early limb outgrowth and patterning. 相似文献
6.
The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. 总被引:2,自引:0,他引:2
J Bressler T F Tsai M Y Wu S F Tsai M A Ramirez D Armstrong A L Beaudet 《Nature genetics》2001,28(3):232-240
In mice and humans, the locus encoding the gene for small nuclear ribonucleoprotein N (SNRPN/Snrpn), as well as other loci in the region are subject to genomic imprinting. The SNRPN promoter is embedded in a maternally methylated CpG island, is expressed only from the paternal chromosome and lies within an imprinting center that is required for switching to and/or maintenance of the paternal epigenotype. We show here that a 0.9-kb deletion of exon 1 of mouse Snrpn did not disrupt imprinting or elicit any obvious phenotype, although it did allow the detection of previously unknown upstream exons. In contrast, a larger, overlapping 4.8-kb deletion caused a partial or mosaic imprinting defect and perinatal lethality when paternally inherited. 相似文献
7.