首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
该文为带有旋转角动量的Gross-Pitaevskii方程构造了分裂高阶紧致差分格式.首先通过时间分裂将其分为线性方程和非线性方程,非线性方程可以通过质量守恒定律进行精确求解,线性方程通过高阶紧致格式和局部1维方法进行离散,最终得到的格式时间方向2阶收敛和空间方向4阶收敛,并保持质量守恒.最后用数值算例验证了格式的收敛阶以及质量守恒性.  相似文献   

2.
构造了一个新的紧致差分格式对 Klein-Gordon-Schrodinger(KGS)耦合方程的周期边值问题进行数值研究,该格式是非耦合且线性的,因此具有更快的计算速度,且便于并行计算。同时讨论了该格式的守恒性质,并在先验估计的基础上运用能量方法分析了差分格式的收敛性,收敛阶是 O(τ^2+h4)。数值实验也证明了该格式的有效性。  相似文献   

3.
Burgers方程是流体力学中非常重要方程.通过Hopf-Cole变换可以将Burgers方程转化为抛物型方程,把为Burgers方程构造一种高精度的、高效率的数值格式的问题变成了为抛物型方程构造一种新格式的问题.新格式以等价于Du Fort-Frankel格式的跳点格式为基础,引入高阶紧致格式的思路以提高跳点格式的收敛阶,称新格式为跳点紧致格式.此格式既保持了跳点格式计算效率高、占用内存少、无条件稳定的优点,又将空间方向收敛阶由2阶提高到了4阶.最后,数值算例验证了跳点紧致格式在空间方向收敛阶是4阶的.  相似文献   

4.
Gross-Pitaevskii方程广泛应用于玻色-爱因斯坦凝聚体(Bose-Einstein condensate,BEC)的动力学研究,然而这个方程通常很难解析求解.因此发展相应的高精度数值求解方法非常重要.发展了结合算符劈裂法、Crank-Nicolson算法和四阶精度Numerov算法的高效求解Gross-Pitaevskii方程的新数值计算方法.通过数值计算可以表明,与传统的四阶精度的五点差分法相比,所提出的算法具有高效和消耗内存小的优点.  相似文献   

5.
将算子分裂方法与高阶紧致差分方法相结合,构造了2维Maxwell方程的局部1维紧致时域有限差分格式.该格式在时间方向和空间方向分别具有1阶和4阶收敛精度,并且具有计算效率高、无条件稳定的优点.数值实验表明:新构造的格式是能量守恒、高效率的.  相似文献   

6.
在满足一定的初值、边值条件下,结合不同的差分格式对非线性薛定谔(NLS)方程进行数值求解.分别利用经典的向前差分算子、二阶中心差分算子、Crank-Nicolson方法和紧致差分算子构造向前Euler格式、Crank-Nicolson格式和紧致差分格式,并证明Crank-Nicolson格式和紧致差分格式精确保持离散质量守恒和能量守恒.利用数学软件MATLAB进行实验计算,结果表明:所构造的3种格式具有合理性及有效性.  相似文献   

7.
利用不同节点处空间导数的线性组合等于函数值线性组合,或者利用方程自身,得到了梁振动方程的3个模板小、精度高的高阶紧致差分格式,通过分析得到它们都是无条件稳定的。最后借助数值算例验证了理论分析的正确性,格式具有非常高的精度。  相似文献   

8.
采用分裂技巧研究了2维的Ginzburg-Landau方程构造高效的数值格式.把2维Ginzburg-Landau方程变成线性和非线性问题以避免求解耦合的非线性方程组.为减少存储量和计算量,对线性问题进一步运用局部1维方法,把它分解为2个1维问题求解.所得到的数值格式具有高效、高精度等数值特征.最后,用数值算例模拟了2维Ginzburg-Landau方程所描述的物理现象,新方法具有较大的优越性.  相似文献   

9.
提出了2维Gross-Pitaevskii方程的辛格式,该格式能够精确地保持电荷守恒和隐式能量守恒,还分析了该格式的数值误差,最后通过数值例子验证了理论结果.  相似文献   

10.
陈安宁 《科学技术与工程》2012,12(27):7007-7012
本文介绍了一种基于原始变量的用于求解二维非定常不可压Navier-Stokes方程的高阶紧致格式。这种紧致格式最初是用于计算声学(CAA)的高精度格式,相对于传统的紧致格式,使用该格式的优点在于减少计算量的同时降低了边界模板的处理难度。这种方法建立在非交错网格上,空间离散具有六阶精度。压力Poisson方程基于九基点模板的四阶紧致格式进行离散,超松弛迭代进行求解。时间推进上采用四阶Runge-Kutta方法。为验证该方法的精度和有效性,利用该格式计算了一个具有解析解的问题,以及二维非定常情况下的方腔驱动流动问题,并且和传统的紧致格式进行了计算时间的对比。  相似文献   

11.
该文对含有阻尼效应的非线性薛定谔方程提出了一个新的共形分裂高阶紧致差分格式.首先利用分裂技巧,将复杂方程分裂为3个子问题; 然后对于其中的非线性子问题,利用其逐点质量守恒的性质可以精确求解,避免了迭代,提高了计算效率; 再利用了高阶紧致方法对空间进行离散,在基本不提高成本的情况下,提升了空间精度; 最后通过理论分析与数值实验证明了该格式的高精度、稳定性以及保持共形质量守恒律.  相似文献   

12.
利用二阶徽商的四阶精度紧致差分逼近公式,给出解抛物型方程精度为O[1-20)t,t2+x4]的一种新的加权差分格式,并通过Fourier方法讨论格式的稳定性.证明了当1/2≤θ≤1时,格式是无条件稳定的;当0≤θ<1/2时,只有r≤1/3(1-2θ),格式才是稳定的,其中θ是加权参数(因子),t,x分别为时空方向的网格长度,r=(D是二阶导数项系数).  相似文献   

13.
提出了MKdV方程的一个多辛Hamilton形式,并利用中点辛离散得到一个等价于多辛Preissman积分的新格式,最后用数值例子说明:多辛格式具有良好的长时间数值行为.  相似文献   

14.
提出了一维扩散反应方程的一种隐式高精度紧致差分格式,空间二阶导数采用四阶紧致差分格式进行离散,时间导数采用四阶向后欧拉公式进行离散,格式截断误差为Oτ4+h4),即时间和空间都可以达到四阶精度,最后通过数值实验验证了本文方法的精确性和可靠性.  相似文献   

15.
利用Galerkin方法和Leray-Schauder不动点定理,一类复Gross-Pitaevskii方程的初边值问题的H2解的唯一存在性得到了证明.  相似文献   

16.
把非线性 Dirac 方程分裂成线性和非线性子问题,这些子问题都具有辛或者多辛结构,可以构造它们的辛格式。对于非线性问题,利用点点守恒律可以精确求解。至于线性问题,在空间方向用高阶紧致格式离散,在时间方向用辛欧拉法进一步离散,此格式半显式的。与传统的多辛格式相比,这种格式有计算效率高、计算时间少等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号