首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超细矿渣在硫铝酸盐水泥砂浆中的应用   总被引:1,自引:0,他引:1  
在硫铝酸盐水泥砂浆中加入超细矿渣,研究不同掺量的超细矿渣对水泥浆体凝结时间及胶砂流动度、强度的影响.采用电子扫描显微镜(SEM)分析水泥砂浆微观结构以及超细矿渣在砂浆中的影响机理.实验结果表明:随着掺量的提高,水泥浆体的初凝时间延长,终凝时间缩短;胶砂流动度随超细矿渣掺量的增大而减小; 随超细矿渣掺量的增大,水泥胶砂的3d和28d强度提高,当掺量质量分数为20%时,水泥砂浆28d的抗折、抗压强度达到最大,分别达到7.3Mpa和46.93Mpa.  相似文献   

2.
采用超滤将竹浆黑液接枝磺化产物(GCL1-JB)分成4个不同分子量范围的级分,采用凝胶渗透色谱进行分子量表征,研究了不同分子量的级分对水泥净浆和砂浆性能的影响.结果表明:高分子量级分对水泥净浆和砂浆的减水分散性能优于低分子量级分;高分子量级分(大于50000)掺量为0.5%时,水灰比为0.29的水泥净浆流动度达287mm,120min经时流动度损失为7%,砂浆的3天、7天和28天抗压强度比分别为159.4%、193.4%和143.8%;中等分子量级分具有很强的引气性和缓凝作用,可改善新拌砂浆的工作性,但是硬化砂浆后期的抗压强度较低;中分子量级分(10000~50000)掺量为0.5%时,水泥净浆的初凝时间延长140 min,终凝时间延长297 min,28天砂浆抗压强度比达99.8%.  相似文献   

3.
模拟实际工程加固情况,对5种强度等级的水泥聚丙烯纤维砂浆(PP-ECC)试件进行了后装拔出法检测砂浆抗压强度的试验研究;对加固层纤维砂浆有无布置钢筋网时 的拔出力数值进行对比,研究了不同钢筋网间距对拔出力的影响;分析了后装拔出法应用于实际工程中的可行性.试验结果表明:水泥聚丙烯纤维砂浆后装拔出力与其抗压强度之间存在显著的线性相关性;对砂浆拔出力值随着钢筋网间距的变化而变化;后装拔出法检测水泥聚丙烯纤维砂浆在加固工程中具有广泛的实用性,满足实际工程需要.  相似文献   

4.
目的探讨硫酸钠、三乙醇胺和早强组分A复合对超早强灌浆料终凝时间、抗折强度和抗压强度等性能与结构的影响.为实际工程中的应用提供理论依据.方法对石英砂的级配进行了较系统的研究.采用行星式搅拌机将原材料搅拌均匀,用贯入阻力法测定凝结时间,用水泥压力试验机测试力学强度,用电子显微镜分析砂胶比1.0的微观结构.结果单掺0.05%三乙醇胺,0.8%硫酸钠或0.1%早强组分A,超早强灌浆料的各项指标基本满足要求.将硫酸钠、三乙醇胺和早强组分A按合理比例复合;石英砂的最佳质量级配为5∶5∶2,且砂率范围1.0~1.5;超早强灌浆料的终凝时间为50~60 min,初始流动度大于320 mm,0.5 h流动度大于280 mm,2 h抗压强度达35.6 MPa,1 d抗折大于12 MPa,28 d抗压强度大于90 MPa.结论采用砂的最佳级配,将硫酸钠、三乙醇胺和早强组分A复合掺入后,胶凝材料的水化早期的水化程度的增幅最大,后期保持稳定增长.提出复合早强剂最佳配比和砂的最佳级配.  相似文献   

5.
采用超滤将竹浆黑液接枝磺化产物(GCL1-JB)分成4个不同分子量范围的级分,采用凝胶渗透色谱进行分子量表征,研究了不同分子量级分对水泥净浆和砂浆性能的影响。结果表明,高分子量级分对水泥净浆和砂浆的减水分散性能优于低分子量级分,高分子量级分(大于50 000)在掺量0.5%时,水灰比为0.29的水泥净浆流动度为287 mm,120 min经时流动度损失为7%,3 天、7 天和28 天砂浆抗压强度比分别为159.4%,193.4%,143.8%。中等分子量级分具有很强的引气性和缓凝作用,可改善新拌砂浆的工作性,但是硬化砂浆后期的抗压强度低于空白砂浆。中分子量级分(10 000~50 000)在掺量0.5%时,水泥净浆初凝时间延长140 min,终凝时间延长297 min,28天砂浆抗压强度比为99.8%。  相似文献   

6.
目的研究聚丙烯纤维对水泥土的增强增韧作用,对比聚丙烯纤维掺量对水泥净浆及水泥土力学性能的影响规律和作用机制,提高水泥土的力学性能.方法在活性矿粉改性水泥土的优化配比基础上,将适量聚丙烯纤维掺入至水泥净浆和水泥土,测定其立方体抗压强度及圆柱体劈裂抗拉强度,同时利用扫描电子显微镜观察试件的断面形貌.结果随纤维体积掺量由0逐步提高至2%,水泥净浆的抗压强度和劈裂抗拉强度均明显增大,在2%纤维掺量情况下,7 d、28 d抗压强度分别提高了62.69%和50.28%,抗拉强度提高122.28%和57.30%,7 d和28 d拉压比也分别提高至0.13和0.10.聚丙烯纤维在水泥土中表现出更为显著的增强作用,0.5%体积掺量下的28 d抗压强度提高了60.23%,但纤维掺量进一步提高反而导致强度的下降;水泥土的抗压强度随胶凝材料掺量的提高而不断增大.结论聚丙烯纤维的引入可明显提高水泥基材料如水泥土的力学性能,尤其是早期的抗拉强度和拉压比即断裂韧性,但以水泥为基本功能组分的胶凝材料仍是水泥土力学性能的基本保证.  相似文献   

7.
为研究再生微粉与矿渣对水泥性能的影响,进行了再生微粉与矿渣对水泥性能的影响试验,并对比分析了实验数据。实验结果显示:随着再生微粉和矿渣掺量的增加各龄期水泥胶砂强度降低,当掺量大于50%时,胶砂强度和强度比均降低较大,且流动度呈现逐渐减小;当掺量大于30%时,胶砂流动度降低较大,此时再生微粉的标准稠度用水量增加速度相对加快,而矿渣标准稠度用水量增加速度则相对变慢;再生微粉和矿渣粉的加入使净浆的初凝时间缩短,当掺量大于10%时,初凝时间随着掺量的增大而缓慢减小,终凝时间却没有规律。得出的结论对工程选用水泥有一定的参考价值。  相似文献   

8.
为进一步研究掺加聚丙烯纤维对水泥稳定土强度的影响,进行了纤维水泥稳定土的7d无侧限抗压强度试验.结果表明,水泥稳定土的无侧限抗压强度随着纤维掺量及纤维长度的改变而变化,纤维掺量对水泥稳定土7d无侧限抗压强度的影响大于纤维长度的影响,水泥稳定土中掺加纤维与否的破坏形态有明显区别,当水泥含量为10%、纤维掺量为1‰、纤维长度为12mm时,水泥稳定土的无侧限抗压强度增幅较大.工程应用中可优先考虑通过提高纤维掺量来有效提高水泥稳定土的无侧限抗压强度.  相似文献   

9.
目的研究铝酸盐水泥、普通硅酸盐水泥、石膏和硅灰四元复合体系超早强灌浆料的流动度、凝结时间和力学性能,找出超早强灌浆料的最佳配比.方法采用行星式搅拌机将原材料搅拌均匀,利用跳桌测试流动度,贯入阻力法测定凝结时间,水泥压力试验机测试力学强度,混凝土收缩膨胀仪测试膨胀性能,分析砂胶比为1.0的微观结构.结果该体系辅以多种外加剂,采用高胶砂比可以保证初始流动度大于325 mm,30 min流动度大于280 mm,2 h抗压强度达34.80 MPa,24 h抗折达13.82 MPa,28 d抗压强度大于99.90 MPa,56 d抗压强度大于28 d抗压强度.早期SEM微观结构显示晶形生长良好,结构致密.结论铝酸盐水泥、普通硅酸盐水泥、石膏和硅灰按一定的比例复配,具有良好的施工和易性和力学性能.  相似文献   

10.
基于单纯形重心设计法对超高性能海水海砂混凝土(ultra-high performance seawater sea-sand concrete, UHPSSC)进行了配合比设计优化,并研究了短切超高分子量聚乙烯(ultra-high molecular weight polyethylene, UHMWPE)纤维和钢纤维对UHPSSC工作性能和力学性能的影响. 结果表明:在综合考虑UHPSSC的流动度、抗折强度和抗压强度的情况下,胶凝材料组成的最优配比确定为水泥、硅灰、粉煤灰的质量比为0.75∶0.15∶0.10. 随着短切纤维掺量的增加,UHPSSC的流动度逐渐降低,抗折强度、抗压强度和弯曲韧性均逐渐增加. UHMWPE纤维对UHPSSC流动度的影响程度更大,而钢纤维对力学性能的提升效果更明显. 随着UHMWPE纤维体积分数的增加,UHPSSC的弯曲破坏模式逐渐由脆性破坏转变为韧性破坏. 当UHMWPE纤维掺量为1.0%时,二次峰值荷载会高于初裂荷载. 此外,当同时混掺钢纤维和UHMWPE纤维时,UHPSSC的流动度略有下降,抗折强度、抗压强度及弯曲韧性均大幅提高. 本研究成果可为UHPSSC的设计和工程应用提供一定的参考.  相似文献   

11.
以P.O.42.5级水泥为主要胶凝材料,碎渣砂、陶砂为骨料,并加入适量的粉煤灰、硅灰辅助胶凝材料和复合外加剂及聚丙烯纤维,以增加砂浆的流动性、匀质性、稳定性、保水性和减少收缩性,研制出具有一定强度和保温性能的保温砌筑砂浆,完全满足蒸压加气混凝土砌块自保温承重或非承重墙体砌筑要求.  相似文献   

12.
矿渣微粉颗粒分布对胶凝材料性能影响的灰色系统   总被引:10,自引:0,他引:10  
应用灰色控制系统理论研究了矿渣微粉颗粒分布对胶凝材料性能的影响,以30%(质量分数)比例的矿渣微粉掺入水泥中,测其胶砂强度和胶凝材料流动度,研究结果表明,矿渣微粉中10-20μm颗粒对7d和28d抗压强度具有最大影响度,20-30μm颗粒则对7d和28d抗折强度具有最大影响度,而10-20μm颗粒对胶凝材料流动度的贡献最大。  相似文献   

13.
在确定了胶凝材料各组分间的最佳比例和各级别砂的最佳比例后,采用正交试验,研究了不同砂胶比、水胶比、钢纤维掺量对RPC流动度、强度以及氯离子扩散系数的影响.结果表明,随砂胶比的增大,RPC的流动度减小,抗折、抗压强度减小,氯离子扩散系数减小.随水胶比的增大,RPC的流动度增大,抗折强度增大,氯离子扩散系数增大,但抗压强度...  相似文献   

14.
以粉煤灰为主要原材料,矿粉为添加剂,水玻璃和氢氧化钠为复合激发剂,标准砂为细集料,制备地聚合物砂浆。运用三维图与等值线作图分析的方法,探究水胶比与胶砂比这两个组成设计参数对粉煤灰基地聚合物砂浆的流动度、抗压强度、抗折强度的影响规律。试验结果表明水胶比与胶砂比均对粉煤灰基地聚合物砂浆流动度与力学强度影响较大。水胶比在0.4~0.42,胶砂比在0.45~0.5时,制备出的地聚合物砂浆工作性能和力学性能较优。基于地聚合物砂浆脆性较大的特点,应用长度为8 mm与12 mm的PVA纤维进行增韧改性。结果表明,掺量为0.5%的PVA纤维对地聚合物砂浆抗压强度影响不大,但是抗折强度显著提高,延性增强,因此压折比下降,弯曲韧性增强。  相似文献   

15.
针对墙体抹灰层开裂、空鼓、脱落等问题,基于课题组前期成果,制备了7组不同配合比的聚合物抹灰砂浆和1组普通水泥抹灰砂浆,分别测试了各组抹灰砂浆的稠度、分层度、凝结时间、拉伸黏结强度、抗压强度和抗折强度.试验结果表明:聚丙烯纤维、乳胶粉、纤维素醚、木质纤维、膨胀剂等5种添加剂的添加,有效地改善了砂浆的流动性和保水性,提高了砂浆的工作性能和抗裂性能,降低了砂浆的压折比,增强了墙体与砂浆之间的黏结强度,延长了新拌砂浆的凝结时间.分析了上述5种添加剂改善砂浆性能的机理,优选出3组聚合物抹灰砂浆供工程应用参考.  相似文献   

16.
为探明有机纤维对CA砂浆(水泥沥青砂浆)工作性能的影响规律,试验研究了4种不同规格的纤维对CA砂浆拌合物流动度、扩展度、泌水及分层的影响.分析结果显示:纤维长度和品种对CA砂浆流动度和扩展度均有明显的影响;纤维在一定程度上能改善CA砂浆的泌水,且长纤维效果优于短纤维;纤维掺量对CA砂浆泌水影响不明显,提高掺量可以改善CA砂浆的分层特性,掺量大于J.2 kg/m3后可以完全消除CA砂浆的分层.  相似文献   

17.
大掺量粉煤灰注浆充填材料试验研究   总被引:7,自引:0,他引:7  
为了解大掺量粉煤灰的水泥粉煤灰注浆材料的物理力学性能,通过室内试验,探讨了在大掺量粉煤灰情况下,不同水灰质量比,固相质量比及不同外加剂用量与硬化体抗压强度,浆体凝结时间,流动度、粘度、结石率之间的相互关系,试验表明,随粉煤灰掺量的增加,硬化体抗压强度、浆体流动度降低,而凝结时间延长,结石率和粘度增大;硬化体早期强度较低,后期强度有较大增长(120d后仍有所增长);适量水玻璃的掺入(水玻璃占水泥质量分数不大于3%)使凝结时间缩短,结石率增大,但导致硬化体抗压强度降低,浆体流动性变差;浆体凝结时间较长,水灰质量比(0.7-1.0):1.0,粉煤灰掺量质量分数为60%-90%时,初凝一般大于12h,终凝一般大于20h。  相似文献   

18.
为了研究聚丙烯纤维砂浆的抗渗性能,对聚丙烯纤维质量基准比Mf为0~0.900%的聚丙烯纤维砂浆进行稠度、分层度、表观密度、凝结时间、抗压强度、抗折强度、拉伸黏结强度、耐碱性、耐热性、吸水率、干缩率和抗渗压力的测试.试验结果表明:随着Mf的增加,聚丙烯纤维砂浆的稠度、分层度、拉伸黏结强度降低,抗折强度先升高后降低,吸水率和干缩率先降低后升高;当Mf从0增加至0.450%时,聚丙烯纤维砂浆的抗渗性能持续提高;当Mf从0.450%增加至0.900%时,砂浆的抗渗性能逐步降低.  相似文献   

19.
碱磷渣胶凝材料早期强度较低,不利于实现快速修补,通过在碱磷渣材料中掺入适量的石墨尾矿粉和普通硅酸盐水泥进行快硬早强磷渣基胶凝材料的研制.结果表明,掺入10%的普通硅酸盐水泥(占胶凝材料总质量的百分比,下同)和15%的石墨尾矿粉时,可有效提高碱磷渣胶凝材料的早期强度.当硅酸钠掺量为5%(以Na_2O计)时,所开发的快硬早强磷渣基胶凝材料胶砂试件的3d抗压强度27.3MPa、3d抗折强度4.1MPa,28d抗压强度56.8MPa、28d抗折强度8.3MPa,符合GB175-2007对普通硅酸盐水泥P.O42.5R的强度要求.运用XRD、SEM、综合热分析等微观测试技术研究了快硬早强磷渣基胶凝材料的水化硬化和微观结构.  相似文献   

20.
胶砂质量比对钢纤维砂浆力学性能的影响   总被引:3,自引:0,他引:3  
对胶砂质量比和纤维直径对钢纤维水泥浆体和砂浆的力学性能的影响进行了研究 .在水泥浆体中 ,微细钢纤维的增强和增韧作用显著高于较大直径的钢纤维 .在砂浆中 ,随着胶砂质量比的降低 ,较大直径的钢纤维的作用越来越强 ,而微细钢纤维的作用逐渐降低 .不同几何尺寸的钢纤维在水泥浆体和砂浆中具有不同的作用效果 ,尺寸效应显著  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号