首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large undercooling (250 K) was achieved in eutectic Ni78.6Si21.4 melt by the combination of molten-glass denucleation and cyclic superheating. The metastable phase formation process in the bulk undercooled eutectic Ni78.6Si21.4 melts was investigated. With the increase of undercooling, different metastable phases form in eutectic Ni78.6Si21.4 melts and part of these metastable phases can be kept at room temperature through slow post-solidification. Under large undercooling, the metastable phases β2-Ni3Si, Ni31Si12 and Ni3Si2 were identified. Especially, the Ni3Si2 phase was obtained in eutectic Ni78.6Si21.4 alloy for the first time. Based on the principle of free energy minimum and transient nucleation theory, the solidification behavior of melts was analyzed with regard to the metastable phase formation when the melts were in highly undercooled state.  相似文献   

2.
A large undercooling (250 K) was achieved in eutectic Ni78.6Si21.4 melt by the combination of molten-glass denucleation and cyclic superheating. The metastable phase formation process in the bulk undercooled eutectic Ni78.6Si21.4 melts was investigated. With the increase of undercooling, different metastable phases form in eutectic Ni78.6Si21.4 melts and part of these metastable phases can be kept at room temperature through slow post-solidification. Under large undercooling, the metastable phases β2-Ni3Si, Ni31Si12 and Ni3Si2 were identified. Especially, the Ni3Si2 phase was obtained in eutectic Ni78.6Si21.4 alloy for the first time. Based on the principle of free energy minimum and transient nucleation theory, the solidification behavior of melts was analyzed with regard to the metastable phase formation when the melts were in highly undercooled state.  相似文献   

3.
To control the quatity, grain size and morphology of crystals in glass-ceramics, relative crystallinity of CaO-Al2O3-SiO2 sintered glass-ceramics was determined using XRD method. The crystallization at different temperature range was studied by SEM. The results indicate that sintering at low temperature (below 900 ℃), crystals originate at the interface of glass particles and grow toward the inside of particles. There was no crystallization taken place within particles and the crystallinity was relatively low. Higher crystallinity can be obtained at mid temperature range (900~1 050 ℃) when crystallization takes place both at and within the interface of glass particles. The crystallinity tends to decrease at high temperature range (1 050~1 100 ℃) due to the rapid sintering and drop of driving force for phase transformation.  相似文献   

4.
Ca α -Sialon compacts pressurelessly-sintered to the intermediate temperature (1 450℃) were investigated with TEM for an overall composition Ca1.8Si6.6Al5.4O1.8N14.2. It was found that in most cases, the newly-formed α -Sialon grains had no epitaxial orientation relationship with the Si3N4 particles; only occasionally heteroepitaxial nucleation of α -Sialon on α -Si3N4 was detected. Further EDAX analysis revealed a much higher Ca concentration in the non-epi- taxially nucleated α -Sialon than in the heteroepitaxially nucleated α -Sialon. Thus a possible correlation between the concentration of metal cations in the α -Sialon structure and the nucleation mechanism has been proposed, i.e. α -Sialon compositions with higher Ca concentration show a stronger trend of non-epitaxial nucleation.  相似文献   

5.
A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.  相似文献   

6.
n the present work, the phase transitions and relaxor behavior of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, x = 0.2―0.4) ferroelectric ceramics have been investigated by means of X-ray diffraction, di-electric spectroscopy, the P-E hysteresis loop measurements and Raman scattering techniques. Structural analysis revealed that with the increase of PbTiO3 content, PMN-PT ceramics experienced a gradual phase transition process from rhombohedral to tetragonal. It is usually believed that such kinds of phase transitions resulted in the linear decrease of relaxation degree. Surprisingly, our analy-sis of the dielectric spectra revealed that the indicator of the degree of diffuseness γ reached the maximum value near morphotropic phase boundary (MPB) (x = 0.32), then decreased with the further increase of PbTiO3 content. The large dielectric relaxor feature near MPB may be attributed to the for-mation of ordered nanodomains, resulting from complex coexisting nanostructures. Further, the P-E hysteresis loop measurements and Raman analysis of the B-site cation order correlated well with the dielectric measurement results. It was found that the hysteresis loop squareness Rsq received the minimum value while the inverse of the value of full wide of half maximum (FWHM) of A1g mode reached the maximum value at MPB composition, which showed similar trends to γ.  相似文献   

7.
By means of measuring the changes of the water absorbance of glass particles in sintering with different starting size and the observation by scanning electron microscopy, the effect of heat treatment on the water absorbance of CaO-Al2O3-SiO2 sintered glass-ceramics was studied in order to decrease the water absorbance of glass-ceramics. Results show that the glass-ceramics has higher water absorbance while sintering at lower temperature (900 ℃). The water absorbance decreases greatly as temperature goes up. However, it increases slightly during longer stay at higher temperature (1 050~1 100 ℃). The starting particle size of the glass has minor effect on the water absorbance of glass-ceramics sintering at higher temperature.  相似文献   

8.
理想的骨再生材料需要具有良好的生物活性和力学强度.前期的研究表明硅磷酸钙(Ca5(PO42SiO4,CPS)陶瓷具有良好的生物活性,可诱导骨髓基质干细胞的成骨分化,并在体内可促进新骨的形成.研究了α-氮化硅(α-Si3N4)对CPS生物陶瓷显微结构、抗弯强度、体外磷灰石形成能力及细胞相容性的影响.结果表明:α-Si3N4的添加可在一定程度上提高CPS生物陶瓷的抗弯强度,当其质量分数为1.5%时,Si3N4-CPS陶瓷的抗弯强度为相同温度下纯CPS陶瓷的1.2倍.模拟体液浸泡实验表明:Si3N4-CPS生物陶瓷均具有良好的磷灰石形成能力.CCK-8细胞相容性实验结果表明:Si3N4-CPS生物陶瓷无明显细胞毒性,展示出良好的生物相容性.  相似文献   

9.
Si3N4陶瓷具有较高的热导率、良好的耐磨性和耐腐蚀性,高温强度高,且高温稳定性和抗热冲击性好,作为结构材料在机械工业,电子工业和化学工业中广泛应用。由于Si3N4陶瓷烧结温度过高,无法在工业生产中大量使用,为了降低其烧结温度、改善烧结致密度和强度等性能,在烧结过程中经常使用烧结助剂。综述了国内外金属氧化物作为烧结助剂在Si3N4陶瓷烧结中的研究现状,提出了其烧结过程中存在的问题。  相似文献   

10.
Dense CaAl2Si2O8 ceramics were prepared via a two-step sintering process at temperatures below 1000°C. First, pre-sintered Ca Al2Si2O8 powders containing small amounts of other crystal phases were obtained by sintering a mixture of calcium hydroxide and kaolin powders at 950°C for 6 h. Subsequently, the combination of the pre-sintered ceramic powders with Me O·2B2O3(Me = Ca, Sr, Ba) flux agents enabled the low-temperature densification sintering of the CaAl2Si2O8 ceramics at 950°C. The sintering behavior and phase formation of the CaAl2Si2O8 ceramics were investigated in terms of the addition of the three MeO·2B2O3 flux agents. Furthermore, alumina and quartz were introduced into the three flux agents to investigate the sintering behaviors, phase evolvements, microstructures, and physical properties of the resulting CaAl2Si2O8 ceramics. The results showed that, because of their low-melting characteristics, the MeO·2B2O3(Me = Ca, Sr, Ba) flux agents facilitated the formation of the CaAl2Si2O8 ceramics with a dense microstructure via liquid-phase sintering. The addition of alumina and quartz to the flux agents also strongly affected the microstructures, phase formation, and physical properties of the CaAl2Si2O8 ceramics.  相似文献   

11.
Dense CaAl2Si2O8 ceramics were prepared via a two-step sintering process at temperatures below 1000°C. First, pre-sintered CaAl2Si2O8 powders containing small amounts of other crystal phases were obtained by sintering a mixture of calcium hydroxide and kaolin powders at 950°C for 6 h. Subsequently, the combination of the pre-sintered ceramic powders with MeO·2B2O3 (Me=Ca, Sr, Ba) flux agents enabled the low-temperature densification sintering of the CaAl2Si2O8 ceramics at 950°C. The sintering behavior and phase formation of the CaAl2Si2O8 ceramics were investigated in terms of the addition of the three MeO·2B2O3 flux agents. Furthermore, alumina and quartz were introduced into the three flux agents to investigate the sintering behaviors, phase evolvements, microstructures, and physical properties of the resulting CaAl2Si2O8 ceramics. The results showed that, because of their low-melting characteristics, the MeO·2B2O3 (Me=Ca, Sr, Ba) flux agents facilitated the formation of the CaAl2Si2O8 ceramics with a dense microstructure via liquid-phase sintering. The addition of alu-mina and quartz to the flux agents also strongly affected the microstructures, phase formation, and physical properties of the CaAl2Si2O8 ce-ramics.  相似文献   

12.
Temperate forest surface soils at the varying distances from main trunks (e.g., Pinus koraiensis and Quercus mongolica) were used to study the effects of acetylene (C2H2) at low concentrations on nitrification, mineralization and microbial biomass N concentrations of the soils, and to assess the contribution of heterotrophic nitrification to nitrous oxide (N2O) emissions from soils. The use of acetylene at partial pressures within a range from 10 to 100 Pa C2H2 in headspace gas gave a significant decrease in N2O emission at soil moisture of c. 45% water-filled porosity space, and the decrease was almost the same in each soil after exposure of C2H2 at low concentrations. Heterotrophic nitrification could account for 21%―48% of total N2O emission from each soil; the contribution would increase with increasing distances from the Pinus koraiensis trunks rather than from the Quercus mongolica trunks. Under the experimental conditions, the use of C2H2 at low concentrations showed no significant influence on soil microbial biomass N, net N mineralization and microbial respiration. However, 100 Pa C2H2 in headspace gas could reduce carbon dioxide (CO2) emissions from soils. According to the rapid consumption of 10 Pa C2H2 by forest soils and convenience for laboratory incubations, 50 Pa C2H2 in headspace gas can be used to study the origin of N2O emissions from forest soils under aerobic conditions and the key associated driving mechanisms. The N2O and CO2 emissions from the soils at the same distances from the Quercus mongolica trunks were larger than those from the Pinus koraiensis trunks, and both emissions decreased as the distances from trunks increased. The stepwise regression analysis showed that 95% of the variability in soil CO2 emissions could be accounted for by the concentrations of soil total C and water soluble organic C and soil pH, and that 72% of the variability in soil N2O emissions could be accounted for by the concentrations of soil total N, exchangeable NH+4-N and microbial biomass N and 25% of the variability in heterotrophic nitrification by the soil microbial biomass N concentration. The emissions of N2O and CO2 from forest soils after exposure of C2H2 at low concentrations were positively related to the net nitrification of the soils.  相似文献   

13.
Monoclinic SrAl2Si2O8 ceramics for Sr immobilization were prepared by a liquid-phase sintering method. The sintering temperature, mineral phase composition, microstructure, flexural strength, bulk density, and Sr ion leaching characteristics of the SrAl2Si2O8 ceramics were investigated. A crystalline monoclinic SrAl2Si2O8 phase formed through liquid-phase sintering at 1223 K. The introduction of four flux agents (B2O3, CaO·2B2O3, SrO·2B2O3, and BaO·2B2O3) to the SrAl2Si2O8 ceramics not only reduced the densification temperature and decreased the volatilization of Sr during high-temperature sintering but also impacted the mechanical properties of the ceramics. Product consistency tests showed that the leaching concentration of Sr ions in the sample with flux agent B2O3 was the lowest, whereas that of Sr ions in the sample with flux agent BaO·2B2O3 was the highest. These results show that the leaching concentration of Sr ions depends largely on the amorphous phase in the ceramics. Meanwhile, the formation of mineral analog ceramics containing Sr is an important factor to improve Sr immobilization.  相似文献   

14.
CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior,microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from1250 1C to 1050 1C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3ceramic sintered at 1100 1C presented good microwave dielectric properties of εr?7.27,Q f?16,850 GHz and τf? 39.53 ppm/1C, which is much better than those of pure CaSiO3 ceramic sintered at 1340oC(Q f?13,109 GHz).The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

15.
Si1-xCx alloys of carbon (C) concentration between 0.6%—1.0% were grown in Si by ion implantation and high temperature annealing. The formation of Si1-xCx alloys under different ion doses and their stability during annealing were studied. If the implanted dose was less than that for amorphizing Si crystals, the implanted C atoms would like to combine with defects produced during implantation and it was difficult to form Si1-xCx alloys after being annealed at 850℃. With the increment of implanted C ion doses, the lattice damage increased and it was easier to form Si1-xCx alloys. But the lattice strain would become saturate and only part of implanted carbon atoms would occupy the substitutional positions to form Si1-xCx alloys as the implanted carbon dose increased to a certain degree. Once Si1-xCx alloys were formed, they were stable at 950℃, but part of their strain would release as the annealing temperature increased to 1 000℃. Stability of the alloys became worse with the increment of carbon concentration in the alloys.  相似文献   

16.
In the present work, Si C ceramics was fabricated with Al N using B_4 C and C as sintering aids by a solid-state pressureless-sintered method. The effects of Al N contents on the densification, mechanical properties, phase compositions, and microstructure evolutions of as-obtained Si C ceramics were thoroughly investigated. Al N was found to promote further densification of the Si C ceramics due to its evaporation over 1800 °C,transportation, and solidification in the pores resulted from Si C grain coarsening. The highest relative density of 99.65% was achieved for Si C sample with 15.0 wt% Al N by the pressureless-sintered method at 2130 °C for 1 h in Ar atmosphere. Furthermore, the fracture mechanism for Si C ceramics containing Al N tended to transfer from single transgranular fracture mode to both transgranular fracture and intergranular fracture modes when the sample with 30.0 wt% Al N sintered at 1900 °C for 1 h in Ar. Also, Si C ceramics with 30.0 wt% Al N exhibited the highest fracture toughness of 5.23 MPa m~(1/2) when sintered at 1900 °C.  相似文献   

17.
The formation of SO2-4/ZrO2 solid superacid is studied with FT-IR、XRD and SEM techniques.Subtractive FT-IR measurement indicates the existence of chemical bonds between ZrO2  and H2SO4,XRD determination reveals that the strength of SO2-4/ZrO2 superacid strongly depends on temperature of calcination and reaches a maximum as the ZrO2 transforms into tetragonal crystal phase.SEM analysis shows that the morphology of ZrO2 surface is changed due to treatment of H2SO4.This catalyst shows higher esterification activity for synthesis of dibutyl moleate which is excellently related with the results of surface analysis.  相似文献   

18.
The deformation microstructure of Ll2-structure Al67Mn8Ti25 compound after tension at high temperature was investigated by TEM. The results show that dynamic recovery occurs and there exist a high density of dislocations, dislocation walls and unstable networks within the grains after deformation at 1 173 K and a strain rate of 8.35×10-5 s-1. At 1 173 K and a strain rate of 3.34×10-5s-1, dynamic recrystallization took place and the deformation microstructures were fine recrystallized grains with stable sub-boundaries in the specimen. Owing to difficulties in the dislocation motion and the process concerned with atom diffusion, the dynamic recovery and dynamic recrystallization occur only at rather higher temperature and lower strain rates, and only under this condition can the appreciate tensile ductility be obtained for this compound.  相似文献   

19.
Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915℃ when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite.  相似文献   

20.
The isothermal oxidizing kinetics of Co-40Cr alloy and its yttrium ion?implanted samples were studied at 1000 ℃ in air by thermal?gravity analysis (TGA). Scanning electronic microscopy (SEM) was used to examine the Cr2O3 oxide film's morphology after oxidation. Secondary ion mass spectrum (SIMS) method was used to examine the binding energy change of chromium caused by Y?doping and its influence on formation of Cr2O3 film. Acoustic emission (AE) method was used in situ to monitor the cracking and spalling of oxide films formed on both samples during oxidizing and subsequent air?cooling stages. Theoretical model simulating the film fracture process was proposed to analyze the acoustic emission spectrum both on time domain and on AE?event number domain. It is found that yttrium ion?implantation can remarkably reduce the isothermal oxidizing rate of Co-40Cr and improve the anti?cracking and anti?spalling properties of Cr2O3 oxide film. Reasons for the improvement are mainly that the implanted yttrium can reduce the grain size of Cr2O3 oxide, increase the high temperature plasticity of oxide film, and remarkably reduce the number and size of Cr2O3/Co-40Cr interfacial defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号