首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了提高新能源汽车锂电池的使用寿命和性能,本研究通过仿真、试验对新能源汽车锂电池的热管理系统进行了分析。首先建立了锂电池组和冷却结构的计算模型,然后设计了锂电池热管理系统,在此基础上,对锂电池热管理系统冷却结构进行了优化,最后,分析了计算模型的仿真结果和热管理系统冷却结构散热性能仿真结果。影响锂电池热管理系统散热的因素包括冷却液流量、冷却液入口温度和放电倍率。结果表明,本研究所建立的计算模型是可行的,当确定了最优结构、冷却液流量值、冷却液入口温度和放电倍率时,在最优参数下,锂电池热管理系统具有良好的冷却效果,研究结果可为新能源汽车的热管理和散热技术提供坚实的理论基础。  相似文献   

2.
为了改善车用锂电池模组在高温高倍率工况下的热均衡性,根据圆柱形锂电池的传热特性,建立了18650锂电池单体的三维热模型,并完成40 °C环境自然对流下的热特性仿真,并通过温升试验验证了生热模型的可靠性. 在此基础之上,针对某型纯电动汽车的动力电池组,提出了一种夹套式电池模组冷却系统,利用Fluent研究了40 °C环境下冷却液流量、冷却液温度和放电倍率对电池组散热均衡性的影响. 结果表明:增加冷却液流量可以有效降低电池组最高温度、最大温差及电池自身温差,改善电池间的温度均匀性;但当入口流量增至0.03 kg/s后,对电池组散热性能的改善效果十分有限;降低冷却液温度后,电池组最高温度下降,但电池组最大温差与单体电池间温差不断上升,单体电池自身最大温差略有降低;当放电倍率增大时,电池组最高温度与最大温差均不断上升,单体电池间温差以及电池自身温差显著增大,电池组热均衡性变差.   相似文献   

3.
针对电动汽车用动力锂离子电池的热安全性问题,以某11 Ah动力锂离子电池为例,进行有限元建模分析,分别对锂离子电池单体在不同充放电倍率、不同环境温度以及不同散热条件下的发热情况进行了分析.结果表明,锂电池放电倍率越高温升越高且温度分布越不均匀,良好的散热模式有助于电池温升的抑制和提高电池的热稳定性.定量化的计算仿真结果符合实际,研究结果为该类电池的建模与仿真提供了借鉴和参考,对锂电池单体的设计优化及锂电池热管理系统的研发具有指导意义.  相似文献   

4.
锂离子电池的工作温度需要保持在合适的范围内,才能获得更好的性能和更长的使用寿命。本文提出了一种平面热管与液冷相结合的锂离子电池热管理系统,通过搭建的锂离子电池发热功率测试平台确定不同放电倍率下单体电池的发热功率,建立热管理系统三维有限元模型,分析不同放电倍率、冷却液流量及冷却液流动方向对散热性能的影响。结果表明,在3 C放电倍率下,最高温度可以控制在50 ℃以下。与相同进液方向相比,不同进液方向下电池包最大温差降低了17.30%。  相似文献   

5.
针对一种利用电动汽车空调制冷剂直接冷却电池组的锂离子电池热管理系统,设计了基于口琴管式冷板的电池模组.进行了直冷和液冷的比较,研究了环境温度、压缩机转速、阀门开度及放电倍率对制冷剂流量和蒸发温度的影响,以及对电池组散热特性的影响.结果表明:采用直冷方式在控制电池组平均温度上比液冷具有更好的冷却效果;压缩机转速增加对电池组有明显的控温效果,在3 500 r/min的转速下即使是2.0 C的高倍率放电也能控制温度在40.00℃以下;阀门开度增大有利于电池组平均温度的下降,但不利于电池组温差的降低;在电池组温差较大的情况下,单体电池温差能占到电池组温差的88%.  相似文献   

6.
相比较传统燃油汽车,电动汽车具有更加高效、更加清洁的优点。电动汽车工作性能的好坏很大程度上取决于电池的工作性能。温度作为影响电池工作性能的重要因素,对电动汽车的使用性和安全性有着非常大的影响。在简要归纳动力电池组热管理必要性和系统功能的前提下,从电池最优工作温度范围、热场计算、温度传感器布置、风机功率选择和电池包设计等几个方面介绍了动力电池组热管理系统的设计要点,并对不同冷却方式进行对比分析,为后续研究提供参考。  相似文献   

7.
变接触面液冷系统的电池模组温度一致性研究   总被引:1,自引:0,他引:1  
为了使电池系统单体间的温度具有较好的一致性,设计了一种在单体间隙中填充铝柱的液冷热管理系统,建立了单体的电化学-热耦合模型,对比研究了不同入口流速、不同截面边长和高度组合的铝柱液冷系统对电池热性能的影响.研究结果表明,截面边长和高度梯度变化的铝柱液冷系统的冷却性能和单体间的温度一致性都要优于截面边长和高度为定值的系统.在放电倍率为3 C,入口流速为0.10 m/s时,此组合方式下电池模块中单体间的最大温差保持在3.72℃以内,满足电池系统热管理的需求.最后,针对此模型对不同放电倍率进行了仿真验证,结果显示单体间温度具有较好的一致性.  相似文献   

8.
从低成本、环保角度出发,设计了一款基于STC89C52和CAN总线功能完善的电动汽车锂电池管理系统.电动汽车锂电池由多个单体锂电池串联而成.该系统通过DS2438对单体锂电池参数采样送到STC89C52处理,采用开关电容均衡,避免单体电池充电过量或不足,用算法实现SOC(剩余电池容量)估算,通过CAN总线实现模块间以及汽车主控制器的通信.实现对锂电池实时监测、管理,提高电池的使用寿命、安全性能.  相似文献   

9.
以某款燃料电池汽车为研究对象,综合考虑车辆的整车布置环境和热管理要求,设计了一套完整的氢燃料电池汽车热管理系统;对关键零部件进行选型与性能匹配设计,运用AMESim软件搭建热管理系统一维仿真模型并进行可信度验证。通过冷却液输入流量、零部件进出水温度及温差等指标对不同工况下的氢燃料电池汽车热管理系统进行仿真分析,结果表明:除电堆和中冷器出水温度在峰值工况下达到极限值不宜长时间工作外,该系统其余工况均运行良好,满足设计要求,可为今后研发燃料电池汽车整车热管理系统提供一定设计思路。  相似文献   

10.
针对锂离子电池单体成组后温度场的非均匀性导致的热不一致性问题,以及高温下电池单体间的热交互引发的热安全性问题,采用仿真与试验相结合的方式,基于锂离子电池生-传热机理,设计了电池单体单独成组、电池单体之间夹隔泡沫棉、电池模组底部布置液冷板3种递进式散热方案,并对液冷板进行了优化设计.采用有限元软件STAR-CCM+,仿真分析了3种方案下电池模组在不同放电倍率时的温度分布.结果表明:增加泡沫棉可减少电池间的热交互,进而提高电池单体间的热均衡性.在结合泡沫棉、导热板以及优化后(采用液冷管道串-并联组合方式)的液冷系统散热条件下,电池模组以2C倍率放电时最高温度为35.08℃,最大温差仅为4.85℃.研究结果可为电池热管理散热系统结构设计提供一定的理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号