首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography.   总被引:10,自引:0,他引:10  
Recognition of the oligosaccharide portion of ganglioside GM1 in membranes of target cells by the heat-labile enterotoxin from Escherichia coli is the crucial first step in its pathogenesis, as it is for the closely related cholera toxin. These toxins have five B subunits, which are essential for GM1 binding, and a single A subunit, which needs to be nicked by proteolysis and reduced, yielding an A1-'enzyme' and an A2-'linker' peptide. A1 is translocated across the membrane of intestinal epithelial cells, possibly after endocytosis, upon which it ADP-ribosylates the G protein Gs alpha. The mechanism of binding and translocation of these toxins has been extensively investigated, but how the protein is orientated on binding is still not clear. Knowing the precise arrangement of the ganglioside binding sites of the toxins will be useful for designing drugs against the diarrhoeal diseases caused by organisms secreting these toxins and in the development of oral vaccines against them. We present here the three-dimensional structure of the E. coli heat-labile enterotoxin complexed with lactose. This reveals the location of the binding site of the terminal galactose of GM1, which is consistent with toxin binding to the target cell with its A1 fragment pointing away from the membrane. A small helix is identified at the carboxy terminus of A2 which emerges through the central pore of the B subunits and probably comes into contact with the membrane upon binding, whereas the A1 subunit is flexible with respect to the B pentamer.  相似文献   

3.
Ligand-receptor binding revealed by the TNF family member TALL-1   总被引:3,自引:0,他引:3  
Liu Y  Hong X  Kappler J  Jiang L  Zhang R  Xu L  Pan CH  Martin WE  Murphy RC  Shu HB  Dai S  Zhang G 《Nature》2003,423(6935):49-56
The tumour necrosis factor (TNF) ligand TALL-1 and its cognate receptors, BCMA, TACI and BAFF-R, were recently identified as members of the TNF superfamily, which are essential factors contributing to B-cell maturation. The functional, soluble fragment of TALL-1 (sTALL-1) forms a virus-like assembly for its proper function. Here we determine the crystal structures of sTALL-1 complexed with the extracellular domains of BCMA and BAFF-R at 2.6 and 2.5 A, respectively. The single cysteine-rich domain of BCMA and BAFF-R both have saddle-like architectures, which sit on the horseback-like surface formed by four coil regions on each individual sTALL-1 monomer. Three novel structural modules, D2, X2 and N, were revealed from the current structures. Sequence alignments, structural modelling and mutagenesis revealed that one disulphide bridge in BAFF-R is critical for determining the binding specificity of the extracellular domain eBAFF-R to TALL-1 instead of APRIL, a closely related ligand of TALL-1, which was confirmed by binding experiments in vitro.  相似文献   

4.
The principal protein excreted in male rat urine, urinary alpha 2-globulin and the homologous mouse protein, major urinary protein, have been well characterized, although their functions remain unclear. Male rat urine affects the behaviour and sexual response of female rats, leading to the proposal that rodent urinary proteins are responsible for binding pheromones and their subsequent release from drying urine. Urinary alpha 2-globulin is also involved in hyaline droplet nephropathy, an important toxicological syndrome in male rats resulting from exposure to a number of industrial chemicals and characterized by the accumulation of liganded urinary alpha 2-globulin in lysosomes in the kidney, followed by the induction of renal cancer. We now report the three-dimensional structures of mouse major urinary protein (at 2.4 A resolution) and rat urinary alpha 2-globulin (at 2.8 A resolution). The results corroborate the role of these proteins in pheromone transport and elaborate the structural basis of ligand binding.  相似文献   

5.
6.
7.
Aldose reductase is the first enzyme in the polyol pathway and catalyses the NADPH-dependent reduction of D-glucose to D-sorbitol. Under normal physiological conditions aldose reductase participates in osmoregulation, but under hyperglycaemic conditions it contributes to the onset and development of severe complications in diabetes. Here we present the crystal structure of pig lens aldose reductase refined to an R-factor of 0.232 at 2.5-A resolution. It exhibits a single domain folded in an eight-stranded parallel alpha/beta barrel, similar to that in triose phosphate isomerase and a score of other enzymes. Hence, aldose reductase does not possess the expected canonical dinucleotide-binding domain. Crystallographic analysis of the binding of 2'-monophospho-adenosine-5'-diphosphoribose, which competitively inhibits NADPH binding reveals that it binds into a cleft located at the C-terminal end of the strands of the alpha/beta barrel. This represents a new type of binding for nicotinamide adenine dinucleotide coenzymes.  相似文献   

8.
Wagner JR  Brunzelle JS  Forest KT  Vierstra RD 《Nature》2005,438(7066):325-331
Phytochromes are red/far-red light photoreceptors that direct photosensory responses across the bacterial, fungal and plant kingdoms. These include photosynthetic potential and pigmentation in bacteria as well as chloroplast development and photomorphogenesis in plants. Phytochromes consist of an amino-terminal region that covalently binds a single bilin chromophore, followed by a carboxy-terminal dimerization domain that often transmits the light signal through a histidine kinase relay. Here we describe the three-dimensional structure of the chromophore-binding domain of Deinococcus radiodurans phytochrome assembled with its chromophore biliverdin in the Pr ground state. Our model, refined to 2.5 A resolution, reaffirms Cys 24 as the chromophore attachment site, locates key amino acids that form a solvent-shielded bilin-binding pocket, and reveals an unusually formed deep trefoil knot that stabilizes this region. The structure provides the first three-dimensional glimpse into the photochromic behaviour of these photoreceptors and helps to explain the evolution of higher plant phytochromes from prokaryotic precursors.  相似文献   

9.
Jiang W  Baker ML  Jakana J  Weigele PR  King J  Chiu W 《Nature》2008,451(7182):1130-1134
A half-century after the determination of the first three-dimensional crystal structure of a protein, more than 40,000 structures ranging from single polypeptides to large assemblies have been reported. The challenge for crystallographers, however, remains the growing of a diffracting crystal. Here we report the 4.5-A resolution structure of a 22-MDa macromolecular assembly, the capsid of the infectious epsilon15 (epsilon15) particle, by single-particle electron cryomicroscopy. From this density map we constructed a complete backbone trace of its major capsid protein, gene product 7 (gp7). The structure reveals a similar protein architecture to that of other tailed double-stranded DNA viruses, even in the absence of detectable sequence similarity. However, the connectivity of the secondary structure elements (topology) in gp7 is unique. Protruding densities are observed around the two-fold axes that cannot be accounted for by gp7. A subsequent proteomic analysis of the whole virus identifies these densities as gp10, a 12-kDa protein. Its structure, location and high binding affinity to the capsid indicate that the gp10 dimer functions as a molecular staple between neighbouring capsomeres to ensure the particle's stability. Beyond epsilon15, this method potentially offers a new approach for modelling the backbone conformations of the protein subunits in other macromolecular assemblies at near-native solution states.  相似文献   

10.
Galactose oxidase is an extracellular enzyme secreted by the fungus Dactylium dendroides. It is monomeric, with a relative molecular mass of 68,000, catalyses the stereospecific oxidation of a broad range of primary alcohol substrates and possesses a unique mononuclear copper site essential for catalysing a two-electron transfer reaction during the oxidation of primary alcohols to corresponding aldehydes. Recent evidence arguing against a Cu(III)-Cu(I) couple implies the existence of a second redox-active site proposed to involve pyrroloquinoline quinone or a tyrosine radical. We now report the crystal structure of galactose oxidase at 1.7 A resolution. This reveals a unique structural feature at the copper site with a novel thioether bond linking Cys 228 and Tyr 272 in a stacking interaction with Trp 290. We propose that these molecular components stabilize the protein free-radical species essential for catalysis and thus provide a 'built-in' secondary cofactor. This feature may represent a new mechanism for mediating electron transfer in metalloenzymes in the absence of exogenous cofactors.  相似文献   

11.
The activation of ubiquitin and related protein modifiers is catalysed by members of the E1 enzyme family that use ATP for the covalent self-attachment of the modifiers to a conserved cysteine. The Escherichia coli proteins MoeB and MoaD are involved in molybdenum cofactor (Moco) biosynthesis, an evolutionarily conserved pathway. The MoeB- and E1-catalysed reactions are mechanistically similar, and despite a lack of sequence similarity, MoaD and ubiquitin display the same fold including a conserved carboxy-terminal Gly-Gly motif. Similar to the E1 enzymes, MoeB activates the C terminus of MoaD to form an acyl-adenylate. Subsequently, a sulphurtransferase converts the MoaD acyl-adenylate to a thiocarboxylate that acts as the sulphur donor during Moco biosynthesis. These findings suggest that ubiquitin and E1 are derived from two ancestral genes closely related to moaD and moeB. Here we present the crystal structures of the MoeB-MoaD complex in its apo, ATP-bound, and MoaD-adenylate forms, and highlight the functional similarities between the MoeB- and E1-substrate complexes. These structures provide a molecular framework for understanding the activation of ubiquitin, Rub, SUMO and the sulphur incorporation step during Moco and thiamine biosynthesis.  相似文献   

12.
Nerve growth factor (NGF) is a member of an expanding family of neurotrophic factors (including brain-derived neurotrophic factor and the neurotrophins) that control the development and survival of certain neuronal populations both in the peripheral and in the central nervous systems. Its biological effects are mediated by a high-affinity ligand-receptor interaction and a tyrosine kinase signalling pathway. A potential use for NGF and its relatives in the treatment of neurological disorders such as Alzheimer's disease and Parkinson's disease requires an understanding of the structure-function relationships of NGF. NGF is a dimeric molecule, with 118 amino acids per protomer. We report the crystal structure of the murine NGF dimer at 2.3-A resolution, which reveals a novel protomer structure consisting of three antiparallel pairs of beta strands, together forming a flat surface. Two subunits associate through this surface, thus burying a total of 2,332 A. Four loop regions, which contain many of the variable residues observed between different NGF-related molecules, may determine the different receptor specificities. A clustering of positively charged side chains may provide a complementary interaction with the acidic low-affinity NGF receptor. The structure provides a model for rational design of analogues of NGF and its relatives and for testing the NGF-receptor recognition determinants critical for signal transduction.  相似文献   

13.
14.
Xu G  Cirilli M  Huang Y  Rich RL  Myszka DG  Wu H 《Nature》2001,410(6827):494-497
Apoptosis is a highly regulated process that is crucial for normal development and homeostasis of multicellular organisms. The p35 protein from baculoviruses effectively prevents apoptosis by its broad-spectrum caspase inhibition. Here we report the crystal structure of p35 in complex with human caspase-8 at 3.0 A resolution, and biochemical and mutagenesis studies based on the structural information. The structure reveals that the caspase is inhibited in the active site through a covalent thioester linkage to p35, which we confirmed by gel electrophoresis, hydroxylamine treatment and mass spectrometry experiments. The p35 protein undergoes dramatic conformational changes on cleavage by the caspase. The repositioning of the amino terminus of p35 into the active site of the caspase eliminates solvent accessibility of the catalytic dyad. This may be crucial for preventing hydrolysis of the thioester intermediate, which is supported by the abrogation of inhibitory activity through mutations at the N terminus of p35. The p35 protein also makes conserved contacts with the caspase outside the active-site region, providing the molecular basis for the broad-spectrum inhibitory activity of this protein. We demonstrate a new molecular mechanism of caspase inhibition, as well as protease inhibition in general.  相似文献   

15.
Ye Q  Krug RM  Tao YJ 《Nature》2006,444(7122):1078-1082
Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication. Here we report a 3.2 A crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein. Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighbouring molecule. This flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.  相似文献   

16.
R N Germain  L R Hendrix 《Nature》1991,353(6340):134-139
Class II major histocompatibility complex molecules undergo a change in structure upon stable binding of peptide antigen. Analysis of the site and extent of this change among class II molecules of splenic antigen-presenting cells reveals the preference of class II for peptide acquisition outside the endoplasmic reticulum and indicates that the class II presentation system is not saturated with self peptides. There are numerous empty class II molecules on the cell surface and peptide antigen is evidently important in regulating surface class II expression.  相似文献   

17.
18.
Molecular structure of F-actin and location of surface binding sites   总被引:37,自引:0,他引:37  
R A Milligan  M Whittaker  D Safer 《Nature》1990,348(6298):217-221
Comparisons of three-dimensional maps of vertebrate muscle thin filaments obtained by cryo-electron microscopy and image analysis, reveal the molecular structure of F-actin, the location of the C terminus of the monomer and the positions of the binding sites of tropomyosin, the myosin head and the N-terminal portion of the myosin A1 light chain on the filament. These data provide strong constraints for evaluating models built from the atomic structure of the monomer and the subsequent identification of molecular contacts.  相似文献   

19.
M P Schlunegger  M G Grütter 《Nature》1992,358(6385):430-434
Transforming growth factor type beta 2 (TGF-beta 2) is a member of an expanding family of growth factors that regulate proliferation and differentiation of many different cell types. TGF-beta 2 binds to various receptors, one of which was shown to be a serine/threonine kinase. TGF-beta 2 is involved in wound healing, bone formation and modulation of immune functions. We report here the crystal structure of TGF-beta 2 at 2.2 A resolution, which reveals a novel monomer fold and dimer association. The monomer consists of two antiparallel pairs of beta-strands forming a flat curved surface and a separate, long alpha-helix. The disulphide-rich core has one disulphide bone pointing through a ring formed by the sequence motifs Cys-Ala-Gly-Ala-Cys and Cys-Lys-Cys, which are themselves connected through the cysteines. Two monomers are connected through a single disulphide bridge and associate such that the helix of one subunit interacts with the concave beta-sheet surface of the other. Four exposed loop regions might determine receptor specificity. The structure provides a suitable model for the TGF-beta s and other members of the super-family and is the basis for the analysis of the TGF-beta 2 interactions with the receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号