首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum information applications.  相似文献   

2.
Kimble HJ 《Nature》2008,453(7198):1023-1030
Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.  相似文献   

3.
光场压缩态和纠缠态是进行量子精密测量和量子信息研究的重要资源.文章简要介绍光场压缩态和纠缠态的增强及其在量子密钥分发、连续变量多组分纠缠态光场的制备、量子通信网络和量子计算中的应用.  相似文献   

4.
Mapping photonic entanglement into and out of a quantum memory   总被引:2,自引:0,他引:2  
Choi KS  Deng H  Laurat J  Kimble HJ 《Nature》2008,452(7183):67-71
Developments in quantum information science rely critically on entanglement-a fundamental aspect of quantum mechanics that causes parts of a composite system to show correlations stronger than can be explained classically. In particular, scalable quantum networks require the capability to create, store and distribute entanglement among distant matter nodes by means of photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon-counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated through probabilistic protocols. But an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading to intrinsically low count rates for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17%. Together with improvements in single-photon sources, our protocol will allow 'on-demand' entanglement of atomic ensembles, a powerful resource for quantum information science.  相似文献   

5.
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.  相似文献   

6.
Experimental demonstration of a BDCZ quantum repeater node   总被引:1,自引:0,他引:1  
Yuan ZS  Chen YA  Zhao B  Chen S  Schmiedmayer J  Pan JW 《Nature》2008,454(7208):1098-1101
Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, Dür, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.  相似文献   

7.
量子隐形传态已成为量子信息学中的一个重要研究领域,笔者从节省量子纠缠资源的目的出发,通过极化分束器(PBS)将2个EPR对制备成单个四粒子GHZ纠缠态,并将此四粒子GHZ纠缠态作为量子信道,从而实现三粒子纠缠GHZ态的量子隐形传输.  相似文献   

8.
J Yin  JG Ren  H Lu  Y Cao  HL Yong  YP Wu  C Liu  SK Liao  F Zhou  Y Jiang  XD Cai  P Xu  GS Pan  JJ Jia  YM Huang  H Yin  JY Wang  YA Chen  CZ Peng  JW Pan 《Nature》2012,488(7410):185-188
Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600?metres (ref. 14) and 13?kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16?kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4?±?0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8?kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.  相似文献   

9.
Entanglement is the fundamental characteristic of quantum physics-much experimental effort is devoted to harnessing it between various physical systems. In particular, entanglement between light and material systems is interesting owing to their anticipated respective roles as 'flying' and stationary qubits in quantum information technologies (such as quantum repeaters and quantum networks). Here we report the demonstration of entanglement between a photon at a telecommunication wavelength (1,338?nm) and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair is mapped onto the crystal and then released into a well-defined spatial mode after a predetermined storage time. The other (telecommunication wavelength) photon is sent directly through a 50-metre fibre link to an analyser. Successful storage of entanglement in the crystal is proved by a violation of the Clauser-Horne-Shimony-Holt inequality by almost three standard deviations (S = 2.64?±?0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building multiplexed quantum repeaters for long-distance quantum networks.  相似文献   

10.
Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.  相似文献   

11.
We present a new scheme for investigating the usefulness of non-maximally entangled states for multi-party quantum state shar-ing in a simple and elegant manner.In our scheme,the sender,Alice shares n various probabilistic channels composed of non-maximally entangled states with n agents in a network.Our protocol involves only Bell-basis measurements,single qubit measurements,and a two-qubit unitary transformation operated by free optional agents.Our scheme is a more convenient realiza-tion because no other multipartite joint measurements are needed.Furthermore,in our scheme various probabilistic channels lessen the requirement for quantum channels,which makes it more practical for physical implementation.  相似文献   

12.
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.  相似文献   

13.
Tanzilli S  Tittel W  Halder M  Alibart O  Baldi P  Gisin N  Zbinden H 《Nature》2005,437(7055):116-120
Quantum communication requires the transfer of quantum states, or quantum bits of information (qubits), from one place to another. From a fundamental perspective, this allows the distribution of entanglement and the demonstration of quantum non-locality over significant distances. Within the context of applications, quantum cryptography offers a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecommunications optical fibres makes the wavelengths of 1,310 nm and 1,550 nm particularly suitable for distribution over long distances. However, qubits encoded into alkaline atoms that absorb and emit at wavelengths around 800 nm have been considered for the storage and processing of quantum information. Hence, future quantum information networks made of telecommunications channels and alkaline memories will require interfaces that enable qubit transfers between these useful wavelengths, while preserving quantum coherence and entanglement. Here we report a demonstration of qubit transfer between photons of wavelength 1,310 nm and 710 nm. The mechanism is a nonlinear up-conversion process, with a success probability of greater than 5 per cent. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1,550 nm, initially entangled with the 1,310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98 per cent.  相似文献   

14.
Entanglement of the orbital angular momentum states of photons.   总被引:9,自引:0,他引:9  
A Mair  A Vaziri  G Weihs  A Zeilinger 《Nature》2001,412(6844):313-316
Entangled quantum states are not separable, regardless of the spatial separation of their components. This is a manifestation of an aspect of quantum mechanics known as quantum non-locality. An important consequence of this is that the measurement of the state of one particle in a two-particle entangled state defines the state of the second particle instantaneously, whereas neither particle possesses its own well-defined state before the measurement. Experimental realizations of entanglement have hitherto been restricted to two-state quantum systems, involving, for example, the two orthogonal polarization states of photons. Here we demonstrate entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum. As these modes can be used to define an infinitely dimensional discrete Hilbert space, this approach provides a practical route to entanglement that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography.  相似文献   

15.
Scalable multiparticle entanglement of trapped ions   总被引:2,自引:0,他引:2  
The generation, manipulation and fundamental understanding of entanglement lies at the very heart of quantum mechanics. Entangled particles are non-interacting but are described by a common wavefunction; consequently, individual particles are not independent of each other and their quantum properties are inextricably interwoven. The intriguing features of entanglement become particularly evident if the particles can be individually controlled and physically separated. However, both the experimental realization and characterization of entanglement become exceedingly difficult for systems with many particles. The main difficulty is to manipulate and detect the quantum state of individual particles as well as to control the interaction between them. So far, entanglement of four ions or five photons has been demonstrated experimentally. The creation of scalable multiparticle entanglement demands a non-exponential scaling of resources with particle number. Among the various kinds of entangled states, the 'W state' plays an important role as its entanglement is maximally persistent and robust even under particle loss. Such states are central as a resource in quantum information processing and multiparty quantum communication. Here we report the scalable and deterministic generation of four-, five-, six-, seven- and eight-particle entangled states of the W type with trapped ions. We obtain the maximum possible information on these states by performing full characterization via state tomography, using individual control and detection of the ions. A detailed analysis proves that the entanglement is genuine. The availability of such multiparticle entangled states, together with full information in the form of their density matrices, creates a test-bed for theoretical studies of multiparticle entanglement. Independently, 'Greenberger-Horne-Zeilinger' entangled states with up to six ions have been created and analysed in Boulder.  相似文献   

16.
量子网络是通过量子节点来产生、处理和存储量子信息,利用飞行比特作为量子信道来传递量子信息的全量子信息处理与传输网络系统.量子网络不仅是实现长距离、网络式量子通信的基础,还可以实现可扩展的分布式量子计算机,并可应用于凝聚态多体系统的量子演化模拟.因此,量子网络是以量子通信、量子计算和量子模拟为中心的量子调控研究的核心课题.目前,选择合适的物理载体作为量子节点以及合适的相互作用形式以实现光子与光子、光子与量子节点以及不同量子节点间的相互作用是量子网络研究的重要课题.冷原子系综以及腔量子电动力学系统是实现量子节点的典型代表.文章将结合本实验室的研究来综述量子网络在以上2个物理系统中近期的部分研究进展,并在文末对量子网络的发展做一定展望.  相似文献   

17.
利用3-Λ型五能级原子介质操控纠缠态   总被引:1,自引:0,他引:1  
通过分析3-Λ型五能级原子系统的暗态极化子,讨论三模量子场与原子介质的信息转换过程以及三个信号场之间的信息转换过程.研究结果表明,利用3-Λ型五能级原子系统,可以存储三模量子态,从理论上解释了三模量子信息在介质中的"写入"和"读出"过程.另外利用3-Λ型五能级原子系统还可以操控某些纠缠态,如实现纠缠态的生成、存储、读出、转换等.  相似文献   

18.
Many-particle entanglement with Bose-Einstein condensates   总被引:9,自引:0,他引:9  
Sørensen A  Duan LM  Cirac JI  Zoller P 《Nature》2001,409(6816):63-66
The possibility of creating and manipulating entangled states of systems of many particles is of significant interest for quantum information processing; such a capability could lead to new applications that rely on the basic principles of quantum mechanics. So far, up to four atoms have been entangled in a controlled way. A crucial requirement for the production of entangled states is that they can be considered pure at the single-particle level. Bose-Einstein condensates fulfil this requirement; hence it is natural to investigate whether they can also be used in some applications of quantum information. Here we propose a method to achieve substantial entanglement of a large number of atoms in a Bose-Einstein condensate. A single resonant laser pulse is applied to all the atoms in the condensate, which is then allowed to evolve freely; in this latter stage, collisional interactions produce entanglement between the atoms. The technique should be realizable with present technology.  相似文献   

19.
Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.  相似文献   

20.
研究4个宇称\|时间(PT)对称Bell态在经典Hermite条件下的纠缠问题. 结果表明: 在4个PT对称Bell态中, |Φ-〉和|Ψ-〉仍为经典量子态, 且在经典量子Hermite内积下仍为最大纠缠态; |Φ+〉和|Ψ+〉不再总是经典量子态, 将其在Hermite内积下进行规范化后的经典量子态也不再总是Hermite内积下的最大纠缠态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号