首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于小波神经网络的胎号识别算法研究   总被引:1,自引:0,他引:1  
针对人工神经网络的特点,对传统BP算法进行了改进。采用小波神经网络方法,有效克服了传统BP算法在实际应用中学习收敛速度慢和容易出现局部极小点的缺点。以轮胎胎号字符识别为例,分别用投影法和Hu不变距方法进行特征提取,并将所提取的特征用作神经网络输入层的神经元。将所设计的小波神经网络经训练后用于胎号的识别。仿真结果表明,小波神经网络在字符识别方面是一个十分有效的方法。  相似文献   

2.
为提高雷达信号的识别率,提出一种改进的果蝇优化算法(improved fruit fly optimization algorithm, IFOA)和模拟退火(simulated annealing, SA)算法相融合并用于优化反向传播(back propagation, BP)神经网络的雷达信号识别算法。首先,该算法提取雷达信号的调和平均盒维数、信息维数和差分近似熵特征作为信号识别的三维特征。然后,改进果蝇优化算法的寻优步长并添加逃脱系数以修改适应度函数,同时引入三维空间的搜索概念扩大果蝇的搜索范围,再对果蝇算法所求解的接受机制通过SA算法进行修正。最后,将融合后的算法IFOA-SA用于优化BP神经网络得到网络最优的初始权值和阈值,并用此网络进行雷达信号的分类识别。通过与BP和FOA-BP进行对比,结果表明IFOA-SA-BP能够提高雷达信号的识别率,证实了该算法的有效性。  相似文献   

3.
为提高雷达信号的识别率,提出一种改进的果蝇优化算法(improved fruit fly optimization algorithm, IFOA)和模拟退火(simulated annealing, SA)算法相融合并用于优化反向传播(back propagation, BP)神经网络的雷达信号识别算法。首先,该算法提取雷达信号的调和平均盒维数、信息维数和差分近似熵特征作为信号识别的三维特征。然后,改进果蝇优化算法的寻优步长并添加逃脱系数以修改适应度函数,同时引入三维空间的搜索概念扩大果蝇的搜索范围,再对果蝇算法所求解的接受机制通过SA算法进行修正。最后,将融合后的算法IFOA-SA用于优化BP神经网络得到网络最优的初始权值和阈值,并用此网络进行雷达信号的分类识别。通过与BP和FOA-BP进行对比,结果表明IFOA-SA-BP能够提高雷达信号的识别率,证实了该算法的有效性。  相似文献   

4.
自动调制识别在频谱监测和认知无线电中占有重要地位.针对现有调制识别算法在低信噪比条件下识别率低的问题,提出一种基于生成对抗网络(generative adversarial network,GAN)和卷积神经网络(convolu-tional neural network,CNN)的数字信号调制识别方法.在利用平滑伪W...  相似文献   

5.
Multi-h连续相位调制(continuous phase modulation, CPM)信号与其调制指数均值相等的Single-h CPM信号的特征具有极大相似性,难以区分。针对该问题,提出了一种基于近似熵的Multi-h CPM调制识别算法。该算法将信号按照相同调制指数为一组的方式拆分为多个子序列,通过舍弃符号间拼接产生的多余模式向量对近似熵进行修正,然后利用Multi-h CPM信号各子序列近似熵的差异性,完成Multi-h CPM信号和Single-h CPM信号的类间识别,最后利用概率神经网络完成类内识别。实验结果表明,该算法在信噪比低至11 dB时,仍可以达到90%的识别率。  相似文献   

6.
针对小样本条件下通信信号识别准确率不高、网络训练困难的问题, 本文提出一种基于残差生成对抗网络的调制识别算法。首先, 设计一种以Leakyrelu作为隐藏层激活函数的新残差单元, 使得网络对输入为负值的数据也可以进行梯度计算; 然后, 将新残差单元组成的残差网络和卷积神经网络作为本文算法的基本网络结构, 使用卷积步幅为1的非对称小卷积核, 更好地提取信号的边缘特征信息; 最后, 用Dropout代替池化操作, 并选择Adam梯度优化算法以交替迭代方式完成网络训练。仿真实验结果表明, 小样本条件下, 残差生成对抗网络算法复杂度明显降低, 信噪比(signal to noise ratio, SNR)在0 dB以上时, 对10种调制信号的识别准确率可以达到91%, 验证了所提方法的有效性。  相似文献   

7.
针对复杂电磁环境下利用人工提取特征识别雷达信号存在的主观性强、特征冗余的问题,提出了一种基于深层卷积神经网络的识别方法。该方法首先提取雷达信号的双谱信息作为深层卷积神经网络模型的输入,然后利用模型的自学习能力提取深层特征,实现对不同调制样式雷达信号的识别,最后对不同结构网络模型的识别结果进行对比。仿真实验结果表明,相比传统雷达信号识别方法,该方法对于不同调制类型信号的识别效果优异,并且在识别率、抗噪性上都有所提升。  相似文献   

8.
一种改进的数字信号自动识别方法   总被引:1,自引:0,他引:1  
现有数字信号自动调制识别方法大多只适用于无记忆信号,如PSK、ASK、FSK信号等。将有记忆信号(MSK信号)和无记忆信号一起考虑,提出了一种改进的数字信号自动识别方法。该方法采用信号的瞬时统计量作为特征参数,采用多层神经网络作为分类器。计算机仿真表明:当噪声采用高斯白噪声,并且信噪比大于15dB时,识别率高于96%;当信噪比不低于10dB时,识别率不低于90%。  相似文献   

9.
飞行动作识别是飞行训练评估和空战智能决策等多项关键技术的基础, 实现飞行动作的快速高效识别具有重大意义。对此, 提出一种基于神经网络符号化模型的方法, 实现对基本飞行动作和复杂飞行动作高效识别。首先, 利用微分分割的思想对飞行参数进行切片处理, 然后通过卷积神经网络(convolutional neural networks, CNN)和长短期记忆(long-short term memory, LSTM)神经网络实现飞行动作的模块化处理, 有效代替了传统方法中对原始数据的逻辑推理。并且该方法可以利用基本飞行动作对飞行过程实现飞行数据分割, 具有良好的扩展性, 能够快速处理批量飞参数据。最后对13种基本飞行动作、两种复杂飞行动作和整段飞行数据进行仿真实验。仿真结果表明, 该方法具有良好的识别性能。  相似文献   

10.
针对多输入单输出(multiple input single output, MISO)系统中的空时分组码(space-time block code, STBC)盲识别问题, 提出了一种基于卷积神经网络(convolutional neural network, CNN)的串行STBC识别方法。首先, 结合STBC识别问题提出了基本CNN (CNN basic, CNN-B)框架; 然后在分析STBC相关性的基础上, 针对空间复用和Alamouti信号混叠问题, 设计了基于相关性的CNN (CNN based on correlation, CNN-BC)模型; 最后将STBC数据集输入到网络模型中, 完成网络的训练和识别测试。仿真结果表明, 相比于基于特征提取的传统算法, 该方法将可识别的STBC扩展到了6种, 并且在低信噪比下的识别准确率更高, 识别过程可控制在微秒级别, 具有较高的工程应用价值。  相似文献   

11.
基于卷积神经网络的小型建筑物检测算法   总被引:1,自引:0,他引:1  
针对基于传统卷积神经网络的建筑物目标检测算法对于小型建筑物检测准确率低的问题, 提出一种基于Mask-区域卷积神经网络(Mask-region convoluional neural networks, Mask-RCNN)模型的小目标检测算法模型。该模型对Mask-RCNN模型中的特征提取网络进行了改进, 设计了一种带有注意力机制的多尺度组卷积神经网络, 有效解决了小目标有用特征较少且易被背景特征和噪声干扰的问题。航拍图像实验结果表明, 改进的检测模型使小型建筑物目标检测准确率较原始Mask-RCNN模型提升了28.9%, 达到了0.663。并且整体检测准确率达到了0.843, 有效提升了航拍建筑物检测准确性。  相似文献   

12.
针对雷达高分辨距离像(high resolution range profile, HRRP)目标识别中有效表示和特征提取这一关键问题,提出了基于双谱-谱图特征和深度卷积神经网络(deep convolution neural network, DCNN)的识别方法。首先,提取HRRP的双谱-谱图特征表示作为CNN的输入。然后,通过网络训练提取出深层本质特征,实现对雷达目标的识别。最后,对不同特征表示的识别结果进行对比。采用卫星目标实测数据进行实验,结果表明,该方法可以准确有效地识别雷达目标,而且与其他常用特征表示相比,双谱-谱图特征表示具有更好的识别准确率和噪声鲁棒性。  相似文献   

13.
基于免疫算法的前向神经网络学习方法   总被引:2,自引:0,他引:2  
提出了一种采用免疫算法训练多层前向神经网络的方法。该方法利用免疫算法训练前向神经网络,能够使网络优化过程趋于全局最优。利用基于遗传策略的聚类机制确定前向神经网络的初始权值,增加了网络训练算法收敛于全局最优的概率。将这种神经网络用于雷达模拟调制信号的调制方式识别的仿真结果表明,采用该算法设计的前向神经网络达到了较高的性能。  相似文献   

14.
基于RBF 神经网络的调制识别   总被引:1,自引:0,他引:1  
针对通信信号这种非稳定的、信噪比(SNR)变化范围较大的信号,利用遗传算法训练的径向基神经网络分类器对各种调制信号的特征矢量进行分类识别,充分发挥径向基神经网络的广泛映射能力和遗传算法的全局收敛能力,并在遗传算法中加入了梯度下降算子,克服遗传算法收敛速度慢的缺点,加快了遗传算法训练神经网络的速度,使得分类器的识别率和鲁棒性得到明显改善。仿真实验的结果证明了此方法的有效性和可行性。  相似文献   

15.
针对水下成像的特殊性以及成像环境的复杂性,构造了基于区域矩的仿射变换不变量,以克服水下不确定因素给目标识别带来的困难。此外针对传统的BP神经网络存在收敛速度慢以及容易陷入局部极小值的缺点,引入粒子群算法对神经网络的学习训练进行优化。为了验证所提方法的有效性,对四类水下目标进行了特征提取以及神经网络识别实验。结果表明改进后的神经网络收敛速度快,并且获得了较高的识别准确率。  相似文献   

16.
针对合成孔径雷达(synthetic aperture radar, SAR)图像目标识别问题, 提出了基于改进的卷积神经网络和数据增强的SAR目标识别方法。首先在训练阶段引入Dropout, 随机删除部分神经元, 增强网络的泛化能力。其次, 在网络中引入L2正则化, 简化模型的同时降低结构风险, 并且能有效地抑制过拟合。然后, 采用Adam优化网络, 提高模型的收敛效率。最后, 采用优选的数据增强方法, 扩充SAR目标数据集, 为网络训练提供更为充足的样本, 进一步提高识别的准确率和模型的泛化性。在运动和静止目标获取与识别(moving and stationary target acquisition and recognition, MSTAR)数据集上进行了实验, 结果表明设计的卷积神经网络识别准确率高, 且具有更好的泛化性。  相似文献   

17.
针对传统调制识别算法在低信噪比下识别率不高的情况,提出双路卷积神经网络级联双向长短时记忆(two-way convolutional neural network cascaded bidirectional long short-term memory, TCNN-BiLSTM)网络的调制识别算法。首先,该算法并联不同尺度卷积核的卷积层,提取调制信号不同维度的特征。然后,级联BiLSTM层,对多维特征构建LSTM时间模型。最后,使用softmax分类器完成识别。仿真实验表明,所提算法结构在加性高斯白噪声和特定信道参数的瑞利衰落信道下,性能要优于基于传统特征和其他网络结构的识别算法。在特定信道参数的瑞利衰落信道下信噪比低至6 dB时,该算法对6种数字调制信号的识别率仍可达到92%以上。  相似文献   

18.
针对当前通信信号调制识别算法在低信噪比(signal-to-noise ratio,SNR)下识别率低、训练速度慢、识别调制类型少的问题,提出了基于信息熵特征和遗传算法-超限学习机(genetic algorithm-extreme learning machine,GA-ELM)的调制识别算法。首先,提取信号的4种熵特征:奇异谱香农熵、奇异谱指数熵、功率谱香农熵和功率谱指数熵作为调制识别的特征参数;其次,采用GA-ELM作为分类器。仿真实验表明,对11种模拟、数字调制信号进行分类识别,在SNR大于4 dB时算法的总体识别率均超过98%,同时该算法训练速度快,识别系统设计简单,具有较大的应用价值。  相似文献   

19.
基于分层结构神经网络的数字调制方式识别   总被引:3,自引:1,他引:3  
自动调制方式识别应用范围广泛,对于军用软件无线电侦察接收机更具有十分重要的意义。研究了数字调制方式识别的特征集,在此基础上针对BPSK、QPSK、8PSK、16QAM、2FSK、4FSK、8FSK、2ASK、4ASK共9种调制类型识别问题,设计了一种分层结构的神经网络分类器。在SNR≥ 8dB时,该分类器的正确识别率达到97%以上,其特点是,识别无需任何先验知识,识别的数字调制类型多,识别的正确率高,达到了自动分类识别的目的,并有利于实现识别的实时化。仿真结果表明了此方法的优越性。  相似文献   

20.
时变参数系统的仿真优化问题是一个新兴的研究课题,相比传统仿真优化,时变参数系统对实时性的要求高,而对解的精度要求不高。本文提出将该问题转换为一类神经网络预测问题,并从理论上证明了该方法的可行性。首先,线下构建神经网络模型描述输入参数到最优解的映射关系;然后,利用训练好的神经网络模型线上实时预测最优解。考虑到边界样本对最优解拟合曲面的影响,提出构建中心样本和边界样本,分别训练两个神经网络模型。仿真和实例表明,该方法能够随时变参数的变化实时给出满意解,从而为求解时变参数仿真优化问题提供一种新的解决思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号