首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. However, the inter-block interference (IBI) and inter-carrier interference (ICI) in an OFDM system affect the performance. To mitigate IBI and ICI, some pre-processing approaches have been proposed based on full channel state information (CSI), which improved the system performance. A pre-processing filter based on partial CSI at the transmitter is designed and investigated. The filter coefficient is given by the optimization processing, the symbol error rate (SER) is tested, and the computation complexity of the proposed scheme is analyzed. Computer simulation results show that the proposed pre-processing filter can effectively mitigate IBI and ICI and the performance can be improved. Compared with pre-processing approaches at the transmitter based on full CSI, the proposed scheme has high spectral efficiency, limited CSI feedback and low computation complexity.  相似文献   

2.
Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.  相似文献   

3.
This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.  相似文献   

4.
The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.  相似文献   

5.
Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes.  相似文献   

6.
This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pruning method to cut nodes with partial Euclidean distances (PEDs) larger than the threshold. Both the known noise value and the unknown noise value are considered to generate the threshold, which is the sum of the two values. The known noise value is the smal est PED of signals in the detected layers. The unknown noise value is generated by the noise power, the quality of service (QoS) and the signal-to-noise ratio (SNR) bound. Simulation results show that by considering both two noise values, the proposed algorithm makes an efficient reduction while the performance drops little.  相似文献   

7.
The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multiple output (MIMO) radars. To gain some insight into the behavior of the CRB, the CRB with a set of given orthogonal waveforms is studied as a specific case. Second, a maximum likelihood (ML) estimation algorithm is proposed. The mean square error (MSE) of the ML estimation of target location and velocity is obtained by Monte Carlo simulation and it approaches CRB in the high signal-to-noise ratio (SNR) region.  相似文献   

8.
This paper analyzes the performance of the orthogonal matching pursuit (OMP) algorithm in recovering sparse signals from noisy measurement. Considering the fact that some matrices satisfy some restricted isometry properties (RIPs) but not the coherence condition, a superior RIP-based condition is proposed, which means that if the measurement matrix satisfies δk+1 〈 1/(2 + √k) and the minimum component signal-to-noise ratio (MCSNR) is bounded, the OMP algorithm can exactly identify the support of the original sparse signal within k iterations. Finally, the theoretical results are verified by numerical simulations con- cerning different values of MCSNR and noise levels.  相似文献   

9.
For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIMO sonar is composed of two parallel transmitting uniform linear arrays (ULAs) and a receiving ULA which is perpendicular to the former. The spacing between the two transmitting ULAs is equal to the product of the receiving sensor number and the receiving inter-sensor spacing. Furthermore, two narrowband linear frequency modulation (LFM) pulses, sharing the same frequency band but with opposite modulation slopes, are used as transmitting waveforms of the two transmitting ULAs. With such an array layout and transmitting signals, the MIMO sonar can sound a swath with the cross-track resolution doubling that of the traditional multibeam sonar using a Mills cross array. Numerical examples are provided to verify the effectiveness of the proposed approach.  相似文献   

10.
The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM (DE-16QAM) is usually used, however, it will cause performance degradation about 3 dB as compared to the conventional 16QAM. To overcome the performance loss, a serial concatenated system with outer low density parity check (LDPC) codes and inner DE-16QAM is proposed. At the receiver, joint iterative differential demodulation and decoding (ID) is carried out to approach the maximum likelihood performance. Moreover, a genetic evolution algorithm based on the extrinsic information transfer chart is proposed to optimize the degree distribution of the outer LDPC codes. Both theoretical analyses and simulation results indicate that this algorithm not only compensates the performance loss, but also obtains a significant performance gain, which is up to 1 dB as compared to the conventional non-DE-16QAM.  相似文献   

11.
Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduling model. Therefore, the improvement of scheduling efficiency in the TDRSS can not only help to increase the resource utilities, but also to reduce the scheduling failure ratio. A model of nonhomogeneous parallel machines scheduling problems with time window (NPM-TW) is firstly built up for the TDRSS, considering the distinct features of the variable preparation time and the nonhomogeneous transmission rates for different types of antennas on each tracking and data relay satellite (TDRS). Then, an adaptive subsequence adjustment (ASA) framework with evolutionary asymmetric path-relinking (EvAPR) is proposed to solve this problem, in which an asymmetric progressive crossover operation is involved to overcome the local optima by the conventional job inserting methods. The numerical results show that, compared with the classical greedy randomized adaptive search procedure (GRASP) algorithm, the scheduling failure ratio of jobs can be reduced over 11% on average by the proposed ASA with EvAPR.  相似文献   

12.
Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic field computation (MFC) model consists of a field simulator, a non-derivative optimization algo- rithm and an auxiliary data processing unit. The mathematical model is deduced and proved that the MFC model is equivalent to a quadratic discriminant function. Furthermore, the finite element prototype is derived, and the simulator is developed, combining with particle swarm optimizer for the field configuration. Two benchmark classification experiments are studied in the numerical experiment, and one notable advantage is demonstrated that less training samples are required and a better generalization can be achieved.  相似文献   

13.
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.  相似文献   

14.
The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information.  相似文献   

15.
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.  相似文献   

16.
Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by using the ordinary independent component analysis (ICA). This method cannot work when specific complex modulations are employed since the assumption of mutual independence cannot be satisfied. The analysis shows that source signals, which are group-wise independent and use multi-dimensional ICA (MICA) instead of ordinary ICA, can be applied in this case. Utilizing the block-diagonal structure of the cumulant matrices, the JADE algorithm is generalized to the multidimensional case to separate the received data into mutually independent groups. Compared with ordinary ICA algorithms, the proposed method does not introduce additional ambiguities. Simulations show that the proposed method overcomes the drawback and achieves a better performance without utilizing coding information than channel estimation based algorithms.  相似文献   

17.
The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.  相似文献   

18.
This paper focuses on the general case (GC) airborne bistatic synthetic aperture radar (SAR) data processing, and a new analytical imaging algorithm based on the extended Loffeld's bistatic formula (ELBF) is proposed. According to the bistatic SAR geometry, the track decoupling formulas that convert the bistatic geometry to the receiver-referenced geometry in a concise way are derived firstly. Then phase terms of ELBF are decomposed into two independent phase terms as the range phase term and the azimuth phase term in a new way. To get the focusing result, the bistatic deformation (BD) term is compensated in the two-dimensional (2- D) frequency domain, and the space-variances of the range phase term and the azimuth phase term are eliminated by chirp scaling (CS) and chirp z-transform (CZT), respectively. The effectiveness of the proposed algorithm is verified by the simulation results.  相似文献   

19.
The acceleration of a high maneuvering target in signal processing is helpful to enhance the performance of the tracker and facilitate the classification of targets. At present, most of the research on acceleration estimation is carried out in cases of a single target with time-frequency analysis methods such as fractional Fourier transform (FRFT), Hough-ambiguity transform (HAT), and Wigner-Vil e distribution (WVD), which need to satisfy enough time duration and sampling theorem. Only one reference proposed a method of acceleration estimation for multiple targets based on modified polynomial phase transform (MPPT) in the lin-ear frequency modulation (LFM) continuous-wave (CW) radar. The method of acceleration estimation for multiple targets in the pulse Doppler (PD) radar has not been reported so far. Compressive sensing (CS) has the advantage of sampling at a low rate and short duration without sacrificing estimation performance. There-fore, this paper proposes a new method of acceleration estimation for multiple maneuvering targets with the unknown number based on CS with pulse Doppler signals. Simulation results validate the effectiveness of the proposed method under several conditions with different duration, measurement numbers, signal to noise ra-tios (SNR), and regularization parameters, respectively. Simulation results also show that the performance of the proposed method is superior to that of FRFT and HAT in the condition of multiple targets.  相似文献   

20.
This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号