首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.  相似文献   

2.
The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.  相似文献   

3.
The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.  相似文献   

4.
This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.  相似文献   

5.
The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM (DE-16QAM) is usually used, however, it will cause performance degradation about 3 dB as compared to the conventional 16QAM. To overcome the performance loss, a serial concatenated system with outer low density parity check (LDPC) codes and inner DE-16QAM is proposed. At the receiver, joint iterative differential demodulation and decoding (ID) is carried out to approach the maximum likelihood performance. Moreover, a genetic evolution algorithm based on the extrinsic information transfer chart is proposed to optimize the degree distribution of the outer LDPC codes. Both theoretical analyses and simulation results indicate that this algorithm not only compensates the performance loss, but also obtains a significant performance gain, which is up to 1 dB as compared to the conventional non-DE-16QAM.  相似文献   

6.
Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes.  相似文献   

7.
This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP.  相似文献   

8.
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.  相似文献   

9.
This paper focuses on the general case (GC) airborne bistatic synthetic aperture radar (SAR) data processing, and a new analytical imaging algorithm based on the extended Loffeld's bistatic formula (ELBF) is proposed. According to the bistatic SAR geometry, the track decoupling formulas that convert the bistatic geometry to the receiver-referenced geometry in a concise way are derived firstly. Then phase terms of ELBF are decomposed into two independent phase terms as the range phase term and the azimuth phase term in a new way. To get the focusing result, the bistatic deformation (BD) term is compensated in the two-dimensional (2- D) frequency domain, and the space-variances of the range phase term and the azimuth phase term are eliminated by chirp scaling (CS) and chirp z-transform (CZT), respectively. The effectiveness of the proposed algorithm is verified by the simulation results.  相似文献   

10.
The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.  相似文献   

11.
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.  相似文献   

12.
Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic field computation (MFC) model consists of a field simulator, a non-derivative optimization algo- rithm and an auxiliary data processing unit. The mathematical model is deduced and proved that the MFC model is equivalent to a quadratic discriminant function. Furthermore, the finite element prototype is derived, and the simulator is developed, combining with particle swarm optimizer for the field configuration. Two benchmark classification experiments are studied in the numerical experiment, and one notable advantage is demonstrated that less training samples are required and a better generalization can be achieved.  相似文献   

13.
A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com- pensate for the fiber optic gyro (FOG) bias drift caused by temperature. In the network, FOG temperature and its gradient are set as input and the FOG bias drift is set as the expected output. A 2-5-1 network trained with IUKF algorithm is established. The IUKF algorithm is developed on the basis of the unscented Kalman filter (UKF). The weight and bias vectors of the hidden layer are set as the state of the UKF and its process and measurement equations are deduced according to the network architecture. To solve the unavoidable estimation deviation of the mean and covariance of the states in the UKF algorithm, iterative computation is introduced into the UKF after the measurement update. While the measure- ment noise R is extended into the state vectors before iteration in order to meet the statistic orthogonality of estimate and mea- surement noise. The IUKF algorithm can provide the optimized estimation for the neural network because of its state expansion and iteration. Temperature rise (-20-20℃) and drop (70-20℃) tests for FOG are carried out in an attemperator. The temperature drift model is built with neural network, and it is trained respectively with BP, UKF and IUKF algorithms. The results prove that the proposed model has higher precision compared with the back- propagation (BP) and UKF network models.  相似文献   

14.
DCT domain filtering method for multi-antenna code acquisition   总被引:4,自引:0,他引:4       下载免费PDF全文
For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.  相似文献   

15.
The acceleration of a high maneuvering target in signal processing is helpful to enhance the performance of the tracker and facilitate the classification of targets. At present, most of the research on acceleration estimation is carried out in cases of a single target with time-frequency analysis methods such as fractional Fourier transform (FRFT), Hough-ambiguity transform (HAT), and Wigner-Vil e distribution (WVD), which need to satisfy enough time duration and sampling theorem. Only one reference proposed a method of acceleration estimation for multiple targets based on modified polynomial phase transform (MPPT) in the lin-ear frequency modulation (LFM) continuous-wave (CW) radar. The method of acceleration estimation for multiple targets in the pulse Doppler (PD) radar has not been reported so far. Compressive sensing (CS) has the advantage of sampling at a low rate and short duration without sacrificing estimation performance. There-fore, this paper proposes a new method of acceleration estimation for multiple maneuvering targets with the unknown number based on CS with pulse Doppler signals. Simulation results validate the effectiveness of the proposed method under several conditions with different duration, measurement numbers, signal to noise ra-tios (SNR), and regularization parameters, respectively. Simulation results also show that the performance of the proposed method is superior to that of FRFT and HAT in the condition of multiple targets.  相似文献   

16.
This paper proposes a simple constant-stress accel- erated life test (ALT) model from Burr type XII distribution when the data are Type-I progressively hybrid censored. The maximum likelihood estimation (MLE) of the parameters is obtained through the numerical method for solving the likelihood equations. Approxi- mate confidence interval (CI), based on normal approximation to the asymptotic distribution of MLE and percentile bootstrap Cl is derived. Finally, a numerical example is introduced and then a Monte Carlo simulation study is carried out to illustrate the pro- posed method.  相似文献   

17.
The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.  相似文献   

18.
This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pruning method to cut nodes with partial Euclidean distances (PEDs) larger than the threshold. Both the known noise value and the unknown noise value are considered to generate the threshold, which is the sum of the two values. The known noise value is the smal est PED of signals in the detected layers. The unknown noise value is generated by the noise power, the quality of service (QoS) and the signal-to-noise ratio (SNR) bound. Simulation results show that by considering both two noise values, the proposed algorithm makes an efficient reduction while the performance drops little.  相似文献   

19.
A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The fitness function makes use of a mechanism called "strategic oscillation" to make the search process have a higher probability to visit solutions around a "feasible boundary". One of the local search procedures aims at improving the lower bound of project makespan to be less than a known upper bound, and another aims at improving a solution of an MRCPSP instance accepting infeasible solutions based on the new fitness function in the search process. A detailed computational experiment is set up using instances from the problem instance library PSPLIB. Computational results show that the proposed MA is very competitive with the state-of-the-art algorithms. The MA obtains improved solutions for one instance of set J30.  相似文献   

20.
In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. However, the inter-block interference (IBI) and inter-carrier interference (ICI) in an OFDM system affect the performance. To mitigate IBI and ICI, some pre-processing approaches have been proposed based on full channel state information (CSI), which improved the system performance. A pre-processing filter based on partial CSI at the transmitter is designed and investigated. The filter coefficient is given by the optimization processing, the symbol error rate (SER) is tested, and the computation complexity of the proposed scheme is analyzed. Computer simulation results show that the proposed pre-processing filter can effectively mitigate IBI and ICI and the performance can be improved. Compared with pre-processing approaches at the transmitter based on full CSI, the proposed scheme has high spectral efficiency, limited CSI feedback and low computation complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号