首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ω形密封环的应力分析   总被引:2,自引:1,他引:1  
作为弹性密封元件,Ω形密封环广泛应用于高参数工况条件下,掌握其在工况下的应力-应变状况是Ω环设计的重要内容。采用非线性有限元法对Ω形密封环在内压以及内压-轴向载荷作用下的应力-应变分布进行了计算,计算结果表明在轴向载荷与内压共同作用下,Ω环内的最大应变值出现在环壳-圆弧段交界面或环圈-圆弧段交界面上。该研究结果为Ω形密封环的极限设计提供了依据。  相似文献   

2.
通过对有减薄缺陷弯管三维有限元模型的分析,研究了受内压弯矩联合作用时局部减薄缺陷与弯管塑性极限载荷的关系。局部减薄弯管的塑性极限载荷与减薄缺陷的形式有关,减薄的轴向尺寸、环向尺寸及深度对塑性极限载荷有不同的影响。弯矩与内压的比例对局部减薄弯管的塑性极限载荷也有影响。文中描述了局部减薄弯管的塑性极限载荷的变化规律及在不同情况下局部减薄弯管的失效模式.  相似文献   

3.
考虑几何和材料的非线性相互作用,采用有限元方法研究复杂载荷下弯管的极限载荷。通过对比过去的研究成果,分析了内压、面内弯矩及其组合下的极限载荷规律。根据有限元结果,研究了直管强化及内压的强化对极限载荷的影响。最后提出了弯矩以及内压、弯矩联合作用下的极限压力、极限弯矩与弯管几何尺寸的定量关系。提出的计算公式扩大了弯曲系数λ的使用范围,反映了弯管强化作用。  相似文献   

4.
针对连续油管在作业过程极易发生自锁、承受高内压等极限工作载荷,且在该极限载荷下极易失效的问题,以经典塑性极限载荷力学模型为基础,基于CAE技术,建立连续油管数值计算模型;并利用实验结果验证数值计算结果的可行性。利用已验证的计算模型研究1(1/4)″和2(3/8)″型号的连续油管在拉伸载荷、弯矩载荷、内压和挤压载荷下的承载能力。研究表明,在上述四种载荷中,得出内压和弯矩载荷是造成连续油管失效的主控载荷。根据计算结果,推荐了连续油管正常服役的载荷范围;并给出了不同载荷的极限载荷值。研究拉伸载荷、弯矩载荷、内压和挤压载荷对连续油管承载能力的影响,可有效避免连续油管提前发生失效和提高连续油管使用寿命。  相似文献   

5.
应用圆环模型对空间XX管接头在4种不同轴压载荷比下极限强度进行了分析,圆环的等效宽度采用Chong等人的14组有限元分析结果通过最小二乘法回归得到,从而建立了空间XX管接头极限载荷的计算公式。  相似文献   

6.
根据净截面垮塌准则,分别求出了含埋藏裂纹、外表面裂纹、内表面裂纹、穿透裂纹管道在非对称弯矩、内压及轴力三种载荷共同作用时的塑性极限载荷计算公式,并给出了穿透裂纹在纯弯曲时中性轴圆心角和无量纲弯矩系数随裂纹偏离角的变化情况。所给出的计算公式可用于管道安全评价。  相似文献   

7.
根据净截面垮塌准则 ,分别求出了含埋藏裂纹、外表面裂纹、内表面裂纹、穿透裂纹管道在非对称弯矩、内压及轴力三种载荷共同作用时的塑性极限载荷计算公式 ,并给出了穿透裂纹在纯弯曲时中性轴圆心角和无量纲弯矩系数随裂纹偏离角的变化情况。所给出的计算公式可用于管道安全评价。  相似文献   

8.
为了进一步探讨方钢管钢骨混凝土轴心受压短柱极限承载力计算方法,在修正的方钢管钢骨混凝土混凝土本构模型基础上,采用有限元法建立了轴压短柱的计算模型,通过模型计算了载荷-轴向变形关系曲线,并与相关文献的试验曲线进行了对比,计算曲线与相关试验曲线吻合较好。通过对计算结果的回归分析,得出了实用的轴压承载力计算公式,利用该公式可进行方钢管钢骨混凝土轴压短柱的极限承载力进行预测。  相似文献   

9.
利用非线性有限元方法对含局部减薄缺陷弯头建立三维有限元模型,分析了在单一内压作用下弯头的弯曲半径、局部减薄缺陷的尺寸以及位置对塑性极限载荷影响,总结出含局部减薄缺陷弯头的塑性极限载荷的变化规律,得出相同弯曲半径和相同尺寸的局部减薄缺陷位于弯头内拱处时,弯头的塑性极限载荷值最小,位于弯头外拱处时其塑性极限载荷最大的重要结论,为含缺陷弯头的安全评定提供了一定的理论依据.  相似文献   

10.
后压浆钻孔灌注桩单桩承载力试验研究   总被引:2,自引:0,他引:2  
依据规范公式对2个工程实例的后压浆钻孔灌注桩的承载力进行了计算,并和静载试验结果进行了比较,比较结果表明,后压浆钻孔灌注桩的承载力有很大的提高.在对135根静载试桩分析的基础上提出了新的极限承载力计算公式,并通过数个后压浆钻孔灌注桩工程的实践,实践表明,其承载力计算结果与静载荷试验值比较吻合.  相似文献   

11.
考虑到Mises屈服条件的非线性,应用加权余量法分析了外边界固支环板在线性荷载与均布荷载共同作用下的极限荷载。针对线性荷载的不同分布形式,给出了极限荷载的计算公式,得到了极限荷载的数值计算结果及影响曲线,并与最大弯矩极限条件下的数值结果进行了对比,验证了其计算结果的合理性。  相似文献   

12.
针对海底管道在铺设和服役期间受到扭矩与外压联合作用发生屈曲的问题,进行缩比尺管道实验和有限元建模分析,对管道的变形和压溃规律进行研究.以缩尺比管道实验为基础,利用ABAQUS有限元软件,对实验管件在扭矩与外压联合作用下的压溃破坏进行模拟,并与实验结果进行对比,验证模型的可靠性.基于有限元分析,研究了扭矩和外压联合作用下管道的截面变形和承载极限.研究结果表明,管道受扭矩作用时,管道截面椭圆度与扭矩是近似指数相关,扭矩较小时,截面无明显变形;当扭矩接近扭矩承载极限时,椭圆度剧增.管道受扭矩和外压联合作用时外压对管道变形影响更大,管道的破坏以压溃屈曲为主,截面为“哑铃状”.管道椭圆度缺陷越大,外压承载极限越小;管道承受的扭矩载荷越大外压承载极限越小;得到了扭矩与外压承载极限的无量纲关系曲线,此关系不受椭圆度影响,扭矩越大外压承载极限的下降速率越大;建议海底管道设计扭矩不超过扭矩承载极限值的70%,以提升管道在扭矩与外压联合作用下的安全性.P-T路径比T-P路径更危险,载荷路径引起的管道承载极限差异在10%以内,椭圆度会降低载荷路径的影响差异.  相似文献   

13.
为研究钢骨-圆管混凝土轴压短柱的相互作用关系,建立钢骨-圆管混凝土轴压短柱极限承载力计算公式,采用三维有限元法和弹塑性法对钢骨-钢管混凝土轴压短柱的荷载-变形曲线进行分析。采用有限元法分析钢骨-钢管混凝土轴压短柱和钢管混凝土轴压短柱的钢管纵向应力与横向应力、核心混凝土的纵向应力以及钢骨纵向应力的变化。基于极限平衡理论建立钢骨-圆管混凝土轴压短柱承载力计算公式。研究结果表明:由于钢骨对核心混凝土的约束,钢骨屈服后纵向应力略低于其屈服强度;与钢管混凝土相比,由于同时受钢管和型钢的约束,钢骨-钢管混凝土中核心混凝土纵向应力有所增大,钢管屈服后纵向应力降低速率、环向应力增加速率减小,钢管减少了对核心混凝土的约束作用;短柱承载力公式计算结果与有限元计算结果相近,且与试验结果相比,这2种计算结果都偏于安全。  相似文献   

14.
通过非线性有限元分析给出了含体积性缺陷弯管在内压、面内弯矩、面外弯矩和扭矩作用下的塑性极限载荷。对与体积型缺陷(长轴、短轴和深度)和管线(外径、壁厚和弯曲半径)有关的几何变量进行了系统的分析,并考虑了内压和面内弯矩、面外弯矩和扭矩的组合。结果表明壁厚、缺陷深度和缺陷方向对极限载荷影响较大。  相似文献   

15.
卡瓦内悬挂管柱的极限承载能力   总被引:3,自引:0,他引:3  
随着油井的加深,作用在卡瓦和卡瓦内悬挂管柱上的载荷随之加大,成为制约深井油田安全生产的重要因素,为确定卡瓦内管柱的承载以,在分析美国API及前苏联推荐公式的基础上,提出力学模型,并根据圆柱壳弯矩理论,用分析和求极值方法,找出了卡瓦内管柱的危险截面,得出了简单实用的卡瓦内悬挂管柱极限载荷计算公式,通过实例证明了该公式的准确性。  相似文献   

16.
用奇异函数法计算环板在复杂荷载作用下的极限荷载   总被引:4,自引:0,他引:4  
将奇异函数法应用于薄板的塑性极限分析问题,用其简化计算内边界支承环板在边缘弯矩和复杂线性荷载共同作用下的极限荷载,给出在极限状态下边缘弯矩和线性荷载所满足的关系式,并给出极限荷载曲线,结果较合理。  相似文献   

17.
通过对三种桩型的异型螺旋桩基础的静载荷试验,绘制了12条P-s曲线,分析了竖向静载荷作用下螺旋桩基础的桩土相互作用和承载性状特征,使用LogP-s方法判定了具有明确物理意义的承压螺旋桩基础极限荷载,讨论了地基土材料密实度、叶片距宽比(叶片间距与叶片净半径的比)对螺旋桩承载性状的影响.当叶片间土柱压密后,P-s曲线光滑,极限荷载增加,桩顶沉降减小;随叶片距宽比的增大,螺旋桩基础的极限荷载和桩顶位移均增大.  相似文献   

18.
在试验的基础上,对均布荷载作用下钢筋混凝土圆、环形板式基础的极限承载力进行了研究.考虑环梁的约束作用,采用了不同于传统计算方法中的破坏机构,使板式基础的极限承载力得到较大的提高。通过试验分析,提出了三种破坏机构及相应的极限承载力计算公式,公式的计算值与实测值进行了比较,吻合良好.  相似文献   

19.
考虑到Mises屈服条件的非线性 ,应用加权余量法分析了外边界固支环板在线性荷载与均布荷载共同作用下的极限荷载。针对线性荷载的不同分布形式 ,给出了极限荷载的计算公式 ,得到了极限荷载的数值计算结果及影响曲线 ,并与最大弯矩极限条件下的数值结果进行了对比 ,验证了其计算结果的合理性  相似文献   

20.
GM准则解析无缺陷弯管的塑性极限载荷   总被引:1,自引:0,他引:1  
用GM(几何中线)屈服准则,对受内压作用无缺陷弯管进行塑性极限分析,求得极限载荷的解析解.该解为弯管壁厚t、平均半径r、曲率半径R0以及屈服强度的函数;极限载荷随着R0值的增大而增大,当R0→∞时,计算出的塑性极限载荷与直管的爆破压力相同.与Tresca,Mises和TSS屈服准则预测的极限载荷比较表明,Tresca屈服准则预测极限载荷的下限,TSS屈服准则预测极限载荷的上限,GM准则预测的极限载荷恰居二者中间,最明显的特点是该解具有与Mises准则几乎相同精度的求解结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号