首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Mutant dynactin in motor neuron disease   总被引:24,自引:0,他引:24  
Impaired axonal transport in motor neurons has been proposed as a mechanism for neuronal degeneration in motor neuron disease. Here we show linkage of a lower motor neuron disease to a region of 4 Mb at chromosome 2p13. Mutation analysis of a gene in this interval that encodes the largest subunit of the axonal transport protein dynactin showed a single base-pair change resulting in an amino-acid substitution that is predicted to distort the folding of dynactin's microtubule-binding domain. Binding assays show decreased binding of the mutant protein to microtubules. Our results show that dysfunction of dynactin-mediated transport can lead to human motor neuron disease.  相似文献   

2.
We recently identified angiogenin (ANG) as a candidate susceptibility gene for amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder characterized by adult-onset loss of motor neurons. We now report the finding of seven missense mutations in 15 individuals, of whom four had familial ALS and 11 apparently 'sporadic' ALS. Our findings provide further evidence that variations in hypoxia-inducible genes have an important role in motor neuron degeneration.  相似文献   

3.
Recently, TDP-43 was identified as a key component of ubiquitinated aggregates in amyotrophic lateral sclerosis (ALS), an adult-onset neurological disorder that leads to the degeneration of motor neurons. Here we report eight missense mutations in nine individuals--six from individuals with sporadic ALS (SALS) and three from those with familial ALS (FALS)--and a concurring increase of a smaller TDP-43 product. These findings further corroborate that TDP-43 is involved in ALS pathogenesis.  相似文献   

4.
Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy and increased incidence in diabetes. FRDA is caused by severely reduced levels of frataxin, a mitochondrial protein of unknown function. Yeast knockout models as well as histological and biochemical data from heart biopsies or autopsies of FRDA patients have shown that frataxin defects cause a specific iron-sulfur protein deficiency and intramitochondrial iron accumulation. We have recently shown that complete absence of frataxin in the mouse leads to early embryonic lethality, demonstrating an important role for frataxin during mouse development. Through a conditional gene-targeting approach, we have generated in parallel a striated muscle frataxin-deficient line and a neuron/cardiac muscle frataxin-deficient line, which together reproduce important progressive pathophysiological and biochemical features of the human disease: cardiac hypertrophy without skeletal muscle involvement, large sensory neuron dysfunction without alteration of the small sensory and motor neurons, and deficient activities of complexes I-III of the respiratory chain and of the aconitases. Our models demonstrate time-dependent intramitochondrial iron accumulation in a frataxin-deficient mammal, which occurs after onset of the pathology and after inactivation of the Fe-S-dependent enzymes. These mutant mice represent the first mammalian models to evaluate treatment strategies for the human disease.  相似文献   

5.
Shaw PJ 《Nature genetics》2001,29(2):103-104
Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disease causing cell death of motor neurons and progressive muscle weakness. The disease is familial in ten percent of cases, of which one-fifth are due to mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Two papers in this issue of Nature Genetics describe homozygous mutations in a new gene on chromosome 2q33 in 4 families of Arabian origin with a rare form of juvenile onset ALS (ALS2). The predicted protein structure has domains homologous to GTPase regulatory proteins, and both the types of mutation and the pattern of inheritance suggest that motor neuron degeneration is the result of a loss of function. Further work will determine the relevance of this breakthrough to other, more common forms of ALS.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are neurodegenerative conditions that affect large motor neurons of the central nervous system. We have identified a familial juvenile PLS (JPLS) locus overlapping the previously identified ALS2 locus on chromosome 2q33. We report two deletion mutations in a new gene that are found both in individuals with ALS2 and those with JPLS, indicating that these conditions have a common genetic origin. The predicted sequence of the protein (alsin) may indicate a mechanism for motor-neuron degeneration, as it may include several cell-signaling motifs with known functions, including three associated with guanine-nucleotide exchange factors for GTPases (GEFs).  相似文献   

7.
Hereditary sensory neuropathy type I (HSN1) is the most common hereditary disorder of peripheral sensory neurons. HSN1 is an autosomal dominant progressive degeneration of dorsal root ganglia and motor neurons with onset in the second or third decades. Initial symptoms are sensory loss in the feet followed by distal muscle wasting and weakness. Loss of pain sensation leads to chronic skin ulcers and distal amputations. The HSN1 locus has been mapped to chromosome 9q22.1-22.3 (refs. 3,4). Here we map the gene SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, to this locus. Mutation screening revealed 3 different missense mutations resulting in changes to 2 amino acids in all affected members of 11 HSN1 families. We found two mutations to be located in exon 5 (C133Y and C133W) and one mutation to be located in exon 6 of SPTLC1 (V144D). All families showing definite or probable linkage to chromosome 9 had mutations in these two exons. These mutations are associated with increased de novo glucosyl ceramide synthesis in lymphoblast cell lines in affected individuals. Increased de novo ceramide synthesis triggers apoptosis and is associated with massive cell death during neural tube closure, raising the possibility that neural degeneration in HSN1 is due to ceramide-induced apoptotic cell death.  相似文献   

8.
Huntington disease is caused by the expansion of a polyglutamine repeat in the Huntingtin protein (Htt) that leads to degeneration of neurons in the central nervous system and the appearance of visible aggregates within neurons. We have developed and tested suppressor polypeptides that bind mutant Htt and interfere with the process of aggregation in cell culture. In a Drosophila model, the most potent suppressor inhibits both adult lethality and photoreceptor neuron degeneration. The appearance of aggregates in photoreceptor neurons correlates strongly with the occurrence of pathology, and expression of suppressor polypeptides delays and limits the appearance of aggregates and protects photoreceptor neurons. These results suggest that targeting the protein interactions leading to aggregate formation may be beneficial for the design and development of therapeutic agents for Huntington disease.  相似文献   

9.
A missense mutation in Tbce causes progressive motor neuronopathy in mice   总被引:1,自引:0,他引:1  
Mice that are homozygous with respect to the progressive motor neuronopathy (pmn) mutation (chromosome 13) develop a progressive caudio-cranial degeneration of their motor axons from the age of two weeks and die four to six weeks after birth. The mutation is fully penetrant, and expressivity does not depend on the genetic background. Based on its pathological features, the pmn mutation has been considered an excellent model for the autosomal recessive proximal childhood form of spinal muscular atrophy (SMA). Previously, we demonstrated that the genes responsible for these disorders were not orthologous. Here, we identify the pmn mutation as resulting in a Trp524Gly substitution at the last residue of the tubulin-specific chaperone e (Tbce) protein that leads to decreased protein stability. Electron microscopy of the sciatic and phrenic nerves of affected mice showed a reduced number of microtubules, probably due to defective stabilization. Transgenic complementation with a wildtype Tbce cDNA restored a normal phenotype in mutant mice. Our observations indicate that Tbce is critical for the maintenance of microtubules in mouse motor axons, and suggest that altered function of tubulin cofactors might be implicated in human motor neuron diseases.  相似文献   

10.
Hypertonia, which results from motor pathway defects in the central nervous system (CNS), is observed in numerous neurological conditions, including cerebral palsy, stroke, spinal cord injury, stiff-person syndrome, spastic paraplegia, dystonia and Parkinson disease. Mice with mutation in the hypertonic (hyrt) gene exhibit severe hypertonia as their primary symptom. Here we show that hyrt mutant mice have much lower levels of gamma-aminobutyric acid type A (GABA(A)) receptors in their CNS, particularly the lower motor neurons, than do wild-type mice, indicating that the hypertonicity of the mutants is likely to be caused by deficits in GABA-mediated motor neuron inhibition. We cloned the responsible gene, trafficking protein, kinesin binding 1 (Trak1), and showed that its protein product interacts with GABA(A) receptors. Our data implicate Trak1 as a crucial regulator of GABA(A) receptor homeostasis and underscore the importance of hyrt mice as a model for studying the molecular etiology of hypertonia associated with human neurological diseases.  相似文献   

11.
12.
Lumbar disc disease (LDD) is caused by degeneration of intervertebral discs of the lumbar spine. One of the most common musculoskeletal disorders, LDD has strong genetic determinants. Using a case-control association study, we identified a functional SNP (1184T --> C, resulting in the amino acid substitution I395T) in CILP, which encodes the cartilage intermediate layer protein, that acts as a modulator of LDD susceptibility. CILP was expressed abundantly in intervertebral discs, and its expression increased as disc degeneration progressed. CILP colocalized with TGF-beta1 in clustering chondrocytes and their territorial matrices in intervertebral discs. CILP inhibited TGF-beta1-mediated induction of cartilage matrix genes through direct interaction with TGF-beta1 and inhibition of TGF-beta1 signaling. The susceptibility-associated 1184C allele showed increased binding and inhibition of TGF-beta1. Therefore, we conclude that the extracellular matrix protein CILP regulates TGF-beta signaling and that this regulation has a crucial role in the etiology and pathogenesis of LDD. Our study also adds to the list of connective tissue diseases that are associated with TGF-beta.  相似文献   

13.
Gene-expression profile of the ageing brain in mice   总被引:19,自引:0,他引:19  
  相似文献   

14.
Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153-156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.  相似文献   

15.
The gracile axonal dystrophy (gad) mouse is an autosomal recessive mutant that shows sensory ataxia at an early stage, followed by motor ataxia at a later stage. Pathologically, the mutant is characterized by 'dying-back' type axonal degeneration and formation of spheroid bodies in nerve terminals. Recent pathological observations have associated brain ageing and neurodegenerative diseases with progressive accumulation of ubiquitinated protein conjugates. In gad mice, accumulation of amyloid beta-protein and ubiquitin-positive deposits occur retrogradely along the sensory and motor nervous systems. We previously reported that the gad mutation was transmitted by a gene on chromosome 5 (refs 10,11). Here we find that the gad mutation is caused by an in-frame deletion including exons 7 and 8 of Uchl1, encoding the ubiquitin carboxy-terminal hydrolase (UCH) isozyme (Uch-l1) selectively expressed in the nervous system and testis. The gad allele encodes a truncated Uch-l1 lacking a segment of 42 amino acids containing a catalytic residue. As Uch-l1 is thought to stimulate protein degradation by generating free monomeric ubiquitin, the gad mutation appears to affect protein turnover. Our data suggest that altered function of the ubiquitin system directly causes neurodegeneration. The gad mouse provides a useful model for investigating human neurodegenerative disorders.  相似文献   

16.
Mutations in Rpe65 disrupt synthesis of the opsin chromophore ligand 11-cis-retinal and cause Leber congenital amaurosis (LCA), a severe, early-onset retinal dystrophy. To test whether light-independent signaling by unliganded opsin causes the degeneration, we used Rpe65-null mice, a model of LCA. Dark-adapted Rpe65-/- mice behaved as if light adapted, exhibiting reduced circulating current, accelerated response turn-off, and diminished intracellular calcium. A genetic block of transducin signaling completely rescued degeneration irrespective of an elevated level of retinyl ester. These studies clearly show that activation of sensory transduction by unliganded opsin, and not the accumulation of retinyl esters, causes light-independent retinal degeneration in LCA. A similar mechanism may also be responsible for degeneration induced by vitamin A deprivation.  相似文献   

17.
RNA exosomes are multi-subunit complexes conserved throughout evolution and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596). We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.  相似文献   

18.
19.
An expansion of a CTG repeat at the DM1 locus causes myotonic dystrophy (DM) by altering the expression of the two adjacent genes, DMPK and SIX5, and through a toxic effect of the repeat-containing RNA. Here we identify two CTCF-binding sites that flank the CTG repeat and form an insulator element between DMPK and SIX5. Methylation of these sites prevents binding of CTCF, indicating that the DM1 locus methylation in congenital DM would disrupt insulator function. Furthermore, CTCF-binding sites are associated with CTG/CAG repeats at several other loci. We suggest a general role for CTG/CAG repeats as components of insulator elements at multiple sites in the human genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号