首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse chromosome 10 harbors several loci associated with hearing loss, including waltzer (v), modifier-of deaf waddler (mdfw) and Age-related hearing loss (Ahl). The human region that is orthologous to the mouse 'waltzer' region is located at 10q21-q22 and contains the human deafness loci DFNB12 and USH1D). Numerous mutations at the waltzer locus have been documented causing erratic circling and hearing loss. Here we report the identification of a new gene mutated in v. The 10.5-kb Cdh23 cDNA encodes a very large, single-pass transmembrane protein, that we have called otocadherin. It has an extracellular domain that contains 27 repeats; these show significant homology to the cadherin ectodomain. In v(6J), a GT transversion creates a premature stop codon. In v(Alb), a CT exchange generates an ectopic donor splice site, effecting deletion of 119 nucleotides of exonic sequence. In v(2J), a GA transition abolishes the donor splice site, leading to aberrant splice forms. All three alleles are predicted to cause loss of function. We demonstrate Cdh23 expression in the neurosensory epithelium and show that during early hair-cell differentiation, stereocilia organization is disrupted in v(2J) homozygotes. Our data indicate that otocadherin is a critical component of hair bundle formation. Mutations in human CDH23 cause Usher syndrome type 1D and thus, establish waltzer as the mouse model for USH1D.  相似文献   

2.
3.
Familial cold autoinflammatory syndrome (FCAS, MIM 120100), commonly known as familial cold urticaria (FCU), is an autosomal-dominant systemic inflammatory disease characterized by intermittent episodes of rash, arthralgia, fever and conjunctivitis after generalized exposure to cold. FCAS was previously mapped to a 10-cM region on chromosome 1q44 (refs. 5,6). Muckle-Wells syndrome (MWS; MIM 191900), which also maps to chromosome 1q44, is an autosomal-dominant periodic fever syndrome with a similar phenotype except that symptoms are not precipitated by cold exposure and that sensorineural hearing loss is frequently also present. To identify the genes for FCAS and MWS, we screened exons in the 1q44 region for mutations by direct sequencing of genomic DNA from affected individuals and controls. This resulted in the identification of four distinct mutations in a gene that segregated with the disorder in three families with FCAS and one family with MWS. This gene, called CIAS1, is expressed in peripheral blood leukocytes and encodes a protein with a pyrin domain, a nucleotide-binding site (NBS, NACHT subfamily) domain and a leucine-rich repeat (LRR) motif region, suggesting a role in the regulation of inflammation and apoptosis.  相似文献   

4.
CHARGE syndrome is a common cause of congenital anomalies affecting several tissues in a nonrandom fashion. We report a 2.3-Mb de novo overlapping microdeletion on chromosome 8q12 identified by array comparative genomic hybridization in two individuals with CHARGE syndrome. Sequence analysis of genes located in this region detected mutations in the gene CHD7 in 10 of 17 individuals with CHARGE syndrome without microdeletions, accounting for the disease in most affected individuals.  相似文献   

5.
Robinow syndrome is a short-limbed dwarfism characterized by abnormal morphogenesis of the face and external genitalia, and vertebral segmentation. The recessive form of Robinow syndrome (RRS; OMIM 268310), particularly frequent in Turkey, has a high incidence of abnormalities of the vertebral column such as hemivertebrae and rib fusions, which is not seen in the dominant form. Some patients have cardiac malformations or facial clefting. We have mapped a gene for RRS to 9q21-q23 in 11 families. Haplotype sharing was observed between three families from Turkey, which localized the gene to a 4. 9-cM interval. The gene ROR2, which encodes an orphan membrane-bound tyrosine kinase, maps to this region. Heterozygous (presumed gain of function) mutations in ROR2 were previously shown to cause dominant brachydactyly type B (BDB; ref. 7). In contrast, Ror2-/- mice have a short-limbed phenotype that is more reminiscent of the mesomelic shortening observed in RRS. We detected several homozygous ROR2 mutations in our cohort of RRS patients that are located upstream from those previously found in BDB. The ROR2 mutations present in RRS result in premature stop codons and predict nonfunctional proteins.  相似文献   

6.
7.
Disorganization of the neurofilament network is a prominent feature of several neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy and axonal Charcot-Marie-Tooth disease. Giant axonal neuropathy (GAN, MIM 256850), a severe, autosomal recessive sensorimotor neuropathy affecting both the peripheral nerves and the central nervous system, is characterized by neurofilament accumulation, leading to segmental distension of the axons. GAN corresponds to a generalized disorganization of the cytoskeletal intermediate filaments (IFs), to which neurofilaments belong, as abnormal aggregation of multiple tissue-specific IFs has been reported: vimentin in endothelial cells, Schwann cells and cultured skin fibroblasts, and glial fibrillary acidic protein (GFAP) in astrocytes. Keratin IFs also seem to be alterated, as most patients present characteristic curly or kinky hairs. We report here identification of the gene GAN, which encodes a novel, ubiquitously expressed protein we have named gigaxonin. We found one frameshift, four nonsense and nine missense mutations in GAN of GAN patients. Gigaxonin is composed of an amino-terminal BTB (for Broad-Complex, Tramtrack and Bric a brac) domain followed by a six kelch repeats, which are predicted to adopt a beta-propeller shape. Distantly related proteins sharing a similar domain organization have various functions associated with the cytoskeleton, predicting that gigaxonin is a novel and distinct cytoskeletal protein that may represent a general pathological target for other neurodegenerative disorders with alterations in the neurofilament network.  相似文献   

8.
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by oculocutaneous albinism and a storage pool deficiency due to an absence of platelet dense bodies. Lysosomal ceroid lipofuscinosis, pulmonary fibrosis and granulomatous colitis are occasional manifestations of the disease. HPS occurs with a frequency of one in 1800 in north-west Puerto Rico due to a founder effect. Several non-Puerto Rican patients also have mutations in HPS1, which produces a protein of unknown function. Another gene, ADTB3A, causes HPS in the pearl mouse and in two brothers with HPS-2 (refs. 11,12). ADTB3A encodes a coat protein involved in vesicle formation, implicating HPS as a disorder of membrane trafficking. We sought to identify other HPS-causing genes. Using homozygosity mapping on pooled DNA of 6 families from central Puerto Rico, we localized a new HPS susceptibility gene to a 1.6-cM interval on chromosome 3q24. The gene, HPS3, has 17 exons, and a putative 113.7-kD product expected to reveal how new vesicles form in specialized cells. The homozygous, disease-causing mutation is a large deletion and represents the second example of a founder mutation causing HPS on the small island of Puerto Rico. We also present an allele-specific assay for diagnosing individuals heterozygous or homozygous for this mutation.  相似文献   

9.
We describe here a previously unknown, dominantly inherited, late-onset basal ganglia disease, variably presenting with extrapyramidal features similar to those of Huntington's disease (HD) or parkinsonism. We mapped the disorder, by linkage analysis, to 19q13.3, which contains the gene for ferritin light polypeptide (FTL). We found an adenine insertion at position 460-461 that is predicted to alter carboxy-terminal residues of the gene product. Brain histochemistry disclosed abnormal aggregates of ferritin and iron. Low serum ferritin levels also characterized patients. Ferritin, the main iron storage protein, is composed of 24 subunits of two types (heavy, H and light, L) which form a soluble, hollow sphere. Brain iron deposition increases normally with age, especially in the basal ganglia, and is a suspected causative factor in several neurodegenerative diseases in which it correlates with visible pathology, possibly by its involvement in toxic free-radical reactions. We found the same mutation in five apparently unrelated subjects with similar extrapyramidal symptoms. An abnormality in ferritin strongly indicates a primary function for iron in the pathogenesis of this new disease, for which we propose the name 'neuroferritinopathy'.  相似文献   

10.
Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.  相似文献   

11.
Magnesium is an essential ion involved in many biochemical and physiological processes. Homeostasis of magnesium levels is tightly regulated and depends on the balance between intestinal absorption and renal excretion. However, little is known about specific proteins mediating transepithelial magnesium transport. Using a positional candidate gene approach, we identified mutations in TRPM6 (also known as CHAK2), encoding TRPM6, in autosomal-recessive hypomagnesemia with secondary hypocalcemia (HSH, OMIM 602014), previously mapped to chromosome 9q22 (ref. 3). The TRPM6 protein is a new member of the long transient receptor potential channel (TRPM) family and is highly similar to TRPM7 (also known as TRP-PLIK), a bifunctional protein that combines calcium- and magnesium-permeable cation channel properties with protein kinase activity. TRPM6 is expressed in intestinal epithelia and kidney tubules. These findings indicate that TRPM6 is crucial for magnesium homeostasis and implicate a TRPM family member in human disease.  相似文献   

12.
13.
Early outgrowth of the vertebrate embryonic limb requires signalling by the apical ectodermal ridge (AER) to the progress zone (PZ), which in response proliferates and lays down the pattern of the presumptive limb in a proximal to distal progression. Signals from the PZ maintain the AER until the anlagen for the distal phalanges have been formed. The semidominant mouse mutant dactylaplasia (Dac) disrupts the maintenance of the AER, leading to truncation of distal structures of the developing footplate, or autopod. Adult Dac homozygotes thus lack hands and feet except for malformed single digits, whereas heterozygotes lack phalanges of the three middle digits. Dac resembles the human autosomal dominant split hand/foot malformation (SHFM) diseases. One of these, SHFM3, maps to chromosome 10q24 (Refs 6,7), which is syntenic to the Dac region on chromosome 19, and may disrupt the orthologue of Dac. We report here the positional cloning of Dac and show that it belongs to the F-box/WD40 gene family, which encodes adapters that target specific proteins for destruction by presenting them to the ubiquitination machinery. In conjuction with recent biochemical studies, this report demonstrates the importance of this gene family in vertebrate embryonic development.  相似文献   

14.
15.
The inherited osteolyses or 'vanishing bone' syndromes are a group of rare disorders of unknown etiology characterized by destruction and resorption of affected bones. The multicentric osteolyses are notable for interphalangeal joint erosions that mimic severe juvenile rheumatoid arthritis (OMIMs 166300, 259600, 259610 and 277950). We recently described an autosomal recessive form of multicentric osteolysis with carpal and tarsal resorption, crippling arthritic changes, marked osteoporosis, palmar and plantar subcutaneous nodules and distinctive facies in a number of consanguineous Saudi Arabian families. We localized the disease gene to 16q12-21 by using members of these families for a genome-wide search for homozygous-by-descent microsatellite markers. Haplotype analysis narrowed the critical region to a 1.2-cM region that spans the gene encoding MMP-2 (gelatinase A, collagenase type IV; (ref. 3). We detected no MMP2 enzymatic activity in the serum or fibroblasts of affected family members. We identified two family-specific homoallelic MMP2 mutations: R101H and Y244X. The nonsense mutation effects a deletion of the substrate-binding and catalytic sites and the fibronectin type II-like and hemopexin/TIMP2 binding domains. Based on molecular modeling, the missense mutation disrupts hydrogen bond formation within the highly conserved prodomain adjacent to the catalytic zinc ion.  相似文献   

16.
17.
Thiamine-responsive megaloblastic anaemia syndrome (TRMA; MIM 249270) is an autosomal recessive disorder with features that include megaloblastic anaemia, mild thrombocytopenia and leucopenia, sensorineural deafness and diabetes mellitus. Treatment with pharmacologic doses of thiamine ameliorates the megaloblastic anaemia and diabetes mellitus. A defect in the plasma membrane transport of thiamine has been demonstrated in erythrocytes and cultured skin fibroblasts from TRMA patients. The gene causing TRMA was assigned to 1q23.2-q23.3 by linkage analysis. Here we report the cloning of a new gene, SLC19A2, identified from high-through-put genomic sequences due to homology with SLC19A1, encoding reduced folate carrier 1 (refs 8-10). We cloned the entire coding region by screening a human fetal brain cDNA library. SLC19A2 encodes a protein (of 497 aa) predicted to have 12 transmembrane domains. We identified 2 frameshift mutations in exon 2. a 1-bp insertion and a 2-bp deletion, among four Iranian families with TRMA. The sequence homology and predicted structure of SLC19A2, as well as its role in TRMA, suggest that its gene product is a thiamine carrier, the first to be identified in complex eukaryotes.  相似文献   

18.
RAB, ADP-ribosylation factors (ARFs) and ARF-like (ARL) proteins belong to the Ras superfamily of small GTP-binding proteins and are essential for various membrane-associated intracellular trafficking processes. None of the approximately 50 known members of this family are linked to human disease. Using a bioinformatic screen for ciliary genes in combination with mutational analyses, we identified ARL6 as the gene underlying Bardet-Biedl syndrome type 3, a multisystemic disorder characterized by obesity, blindness, polydactyly, renal abnormalities and cognitive impairment. We uncovered four different homozygous substitutions in ARL6 in four unrelated families affected with Bardet-Biedl syndrome, two of which disrupt a threonine residue important for GTP binding and function of several related small GTP-binding proteins. Analysis of the Caenorhabditis elegans ARL6 homolog indicates that it is specifically expressed in ciliated cells, and that, in addition to the postulated cytoplasmic functions of ARL proteins, it undergoes intraflagellar transport. These findings implicate a small GTP-binding protein in ciliary transport and the pathogenesis of a pleiotropic disorder.  相似文献   

19.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号