首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D A Melton 《Nature》1987,328(6125):80-82
A prominent hypothesis in embryology is that localized maternal factors are important in specifying cell fate. There are, however, only a few examples of maternal molecules that have been shown to be localized and very little is known about how such factors are physically localized within an egg (for review see ref. 1). Previously, cDNA clones were obtained for a class of localized maternal mRNAs from Xenopus laevis. These mRNAs are unusual in that they are concentrated at either the animal or vegetal pole of unfertilized eggs. In the present study the synthesis and intracellular distribution of one of them, Vg1, has been examined during oogenesis. The results show that Vg1 mRNA is localized as a crescent at the vegetal pole of mature oocytes. Surprisingly, this mRNA is uniformly distributed in the cytoplasm of immature oocytes. These findings suggest that a single cell, the frog oocyte, has some mechanism for translocating specific RNAs like Vg1. The process that moves Vg1 mRNA is evidently a cytoplasmic localization machinery which is not directly coupled to the synthesis of Vg1 RNA.  相似文献   

2.
A mutation that changes cell movement and cell fate in the zebrafish embryo   总被引:13,自引:0,他引:13  
C B Kimmel  D A Kane  C Walker  R M Warga  M B Rothman 《Nature》1989,337(6205):358-362
The study of developmental patterning has been facilitated by the availability of mutations that produce changes in cell fate, in animals such as Caenorhabditis elegans and Drosophila melanogaster. We now describe a zygotic lethal mutation in the zebrafish, Brachydanio rerio, that also changes how particular embryonic cells develop. Severe pattern deficiencies are observed that are restricted to a single body region, the trunk. The mutation may directly affect mesoderm, as somites do not form in the trunk. Head and tail structures, including tail somites, are relatively undisturbed. The earliest detected expression of the mutation is during gastrulation, when movements of mesodermal cells occur incorrectly. We injected prospective trunk mesodermal cells with lineage tracer dye and observed that in mutants these cells may enter a new body region, the tail, and there may express a new fate appropriate for the changed position.  相似文献   

3.
J C Smith  B M Price  K Van Nimmen  D Huylebroeck 《Nature》1990,345(6277):729-731
The first inductive interaction in amphibian development is mesoderm induction, when a signal from the vegetal hemisphere of the blastula induces mesoderm from overlying equatorial cells. Recently, several 'mesoderm-inducing factors' (MIFs) have been discovered. These cause isolated Xenopus animal caps to form mesodermal cell types such as muscle, instead of their normal fate of epidermis. The MIFs fall into two classes. One comprises members of the fibroblast growth factor (FGF) family, and the other members of the transforming growth factor type beta (TGF-beta) family. Of the latter group, the most potent is XTC-MIF, a protein produced by Xenopus XTC cells. Here we show that XTC-MIF is the homologue of mammalian activin A. Activins modulate the release of follicle-stimulating hormone from cultured anterior pituitary cells and cause the differentiation of two erythroleukaemia cell lines. Our results indicate that these molecules may also act in early development during formation of the mesoderm.  相似文献   

4.
The maternal messenger RNA An3 was originally identified localized to the animal hemisphere of Xenopus laevis oocytes, eggs and early embryos. Xenopus embryos depend on mRNA and protein present in the egg before fertilization (maternal molecules) to provide the information needed for early development. Localization of maternal mRNA gives cells derived from different regions of the egg distinctive capacities for protein synthesis. We show here that An3 mRNA encodes a protein with 74% identity to a protein encoded by the testes-specific mRNA PL10 found in mouse, which is proposed to have RNA helicase activity. Because the gene encoding An3 mRNA is reactivated after gastrulation and remains active throughout embryogenesis, we have examined its distribution in embryonic and adult tissues. Unlike PL10 mRNA, which is primarily restricted to the testes, An3 mRNA is broadly distributed in later development.  相似文献   

5.
6.
The acquisition of neural fate by embryonic ectodermal cells is a fundamental step in the formation of the vertebrate nervous system. Neural induction seems to involve signalling by fibroblast growth factors (FGFs) and attenuation of the activity of bone morphogenetic protein (BMP). But FGFs, either alone or in combination with BMP antagonists, are not sufficient to induce neural fate in prospective epidermal ectoderm of amniote embryos. These findings suggest that additional signals are involved in the specification of neural fate. Here we show that the state of Wnt signalling is a critical determinant of neural and epidermal fates in the chick embryo. Continual Wnt signalling blocks the response of epiblast cells to FGF signals, permitting the expression and signalling of BMP to direct an epidermal fate. Conversely, a lack of exposure of epiblast cells to Wnt signals permits FGFs to induce a neural fate.  相似文献   

7.
A Pax3/Pax7-dependent population of skeletal muscle progenitor cells   总被引:2,自引:0,他引:2  
Relaix F  Rocancourt D  Mansouri A  Buckingham M 《Nature》2005,435(7044):948-953
  相似文献   

8.
Migration of myoblasts across basal lamina during skeletal muscle development   总被引:16,自引:0,他引:16  
S M Hughes  H M Blau 《Nature》1990,345(6273):350-353
Basal lamina is a sheet of extracellular matrix that separates cells into topologically distinct groups during morphogenesis and is thought to form a barrier to cell migration. We have examined whether, during normal muscle development, myoblasts--mononucleate muscle precursor cells--can cross the basal lamina that surrounds each multinucleate muscle fibre. We marked myoblasts in vivo by injecting replication-defective retroviral vectors encoding LacZ into muscle tissue and analysed the fate of their progeny by the expression of beta-galactosidase. A dual labelling method with broad application to retroviral lineage-marking studies was developed to ensure that most clusters of labelled cells were clones derived from a single precursor cell. Most of the myoblasts that were infected at a late stage of rat hindlimb development, when each fibre with its satellite myoblasts is individually encased in a basal lamina sheath, gave rise to clones that contributed to several labelled fibres. Our results show that myoblasts from healthy fibres migrate across basal lamina during normal development and could contribute to the repair of fibres damaged by injury or disease.  相似文献   

9.
Thy-1 cDNA sequence suggests a novel regulatory mechanism   总被引:18,自引:0,他引:18  
T Moriuchi  H C Chang  R Denome  J Silver 《Nature》1983,301(5895):80-82
  相似文献   

10.
K Sander  R Lehmann 《Nature》1988,335(6185):68-70
The segmental pattern of insect embryos depends on influences from morphogenetic centres near each of the egg poles. In Drosophila, maternal effect mutations are known that impair the normal function of each centre. Injection of wild-type cytoplasm into mutant eggs has revealed that morphogenetic signals localized at the anterior and posterior pole of eggs can be transplanted. We show here that these activities can also be detected during oogenesis. Posterior activity can be recovered at an early stage (stage 10, ref. 5) from the oocyte-nurse cell complex, but anterior activity can only be detected in the mature oocytes (stage 14). We conclude that the bicoid-dependent anterior signal, although produced by the nurse cells, does not become active before it is localized to the anterior egg pole, whereas posterior activity can be detected in the nurse cells before, and therefore independently of, its localization to the posterior egg pole.  相似文献   

11.
Lynch JA  Brent AE  Leaf DS  Pultz MA  Desplan C 《Nature》2006,439(7077):728-732
The Bicoid (Bcd) gradient in Drosophila has long been a model for the action of a morphogen in establishing embryonic polarity. However, it is now clear that bcd is a unique feature of higher Diptera. An evolutionarily ancient gene, orthodenticle (otd), has a bcd-like role in the beetle Tribolium. Unlike the Bcd gradient, which arises by diffusion of protein from an anteriorly localized messenger RNA, the Tribolium Otd gradient forms by translational repression of otd mRNA by a posteriorly localized factor. These differences in gradient formation are correlated with differences in modes of embryonic patterning. Drosophila uses long germ embryogenesis, where the embryo derives from the entire anterior-posterior axis, and all segments are patterned at the blastoderm stage, before gastrulation. In contrast, Tribolium undergoes short germ embryogenesis: the embryo arises from cells in the posterior of the egg, and only anterior segments are patterned at the blastoderm stage, with the remaining segments arising after gastrulation from a growth zone. Here we describe the role of otd in the long germband embryo of the wasp Nasonia vitripennis. We show that Nasonia otd maternal mRNA is localized at both poles of the embryo, and resulting protein gradients pattern both poles. Thus, localized Nasonia otd has two major roles that allow long germ development. It activates anterior targets at the anterior of the egg in a manner reminiscent of the Bcd gradient, and it is required for pre-gastrulation expression of posterior gap genes.  相似文献   

12.
13.
Duchenne muscular dystrophy gene product is not identical in muscle and brain   总被引:30,自引:0,他引:30  
U Nudel  D Zuk  P Einat  E Zeelon  Z Levy  S Neuman  D Yaffe 《Nature》1989,337(6202):76-78
  相似文献   

14.
It has been generally accepted that the mammalian embryo starts its development with all cells identical, and only when inside and outside cells form do differences between cells first emerge. However, recent findings show that cells in the mouse embryo can differ in their developmental fate and potency as early as the four-cell stage. These differences depend on the orientation and order of the cleavage divisions that generated them. Because epigenetic marks are suggested to be involved in sustaining pluripotency, we considered that such developmental properties might be achieved through epigenetic mechanisms. Here we show that modification of histone H3, through the methylation of specific arginine residues, is correlated with cell fate and potency. Levels of H3 methylation at specific arginine residues are maximal in four-cell blastomeres that will contribute to the inner cell mass (ICM) and polar trophectoderm and undertake full development when combined together in chimaeras. Arginine methylation of H3 is minimal in cells whose progeny contributes more to the mural trophectoderm and that show compromised development when combined in chimaeras. This suggests that higher levels of H3 arginine methylation predispose blastomeres to contribute to the pluripotent cells of the ICM. We confirm this prediction by overexpressing the H3-specific arginine methyltransferase CARM1 in individual blastomeres and show that this directs their progeny to the ICM and results in a dramatic upregulation of Nanog and Sox2. Thus, our results identify specific histone modifications as the earliest known epigenetic marker contributing to development of ICM and show that manipulation of epigenetic information influences cell fate determination.  相似文献   

15.
Gros J  Serralbo O  Marcelle C 《Nature》2009,457(7229):589-593
The early vertebrate skeletal muscle is a well-organized tissue in which the primitive muscle fibres, the myocytes, are all parallel and aligned along the antero-posterior axis of the embryo. How myofibres acquire their orientation during development is unknown. Here we show that during early chick myogenesis WNT11 has an essential role in the oriented elongation of the myocytes. We find that the neural tube, known to drive WNT11 expression in the medial border of somites, is necessary and sufficient to orient myocyte elongation. We then show that the specific inhibition of WNT11 function in somites leads to the disorganization of myocytes. We establish that WNT11 mediates this effect through the evolutionary conserved planar cell polarity (PCP) pathway, downstream of the WNT/beta-catenin-dependent pathway, required to initiate the myogenic program of myocytes and WNT11 expression. Finally, we demonstrate that a localized ectopic source of WNT11 can markedly change the orientation of myocytes, indicating that WNT11 acts as a directional cue in this process. All together, these data show that the sequential action of the WNT/PCP and the WNT/beta-catenin pathways is necessary for the formation of fully functional embryonic muscle fibres. This study also provides evidence that WNTs can act as instructive cues to regulate the PCP pathway in vertebrates.  相似文献   

16.
Tawk M  Araya C  Lyons DA  Reugels AM  Girdler GC  Bayley PR  Hyde DR  Tada M  Clarke JD 《Nature》2007,446(7137):797-800
The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.  相似文献   

17.
Localization of muscle gene products in nuclear domains   总被引:26,自引:0,他引:26  
G K Pavlath  K Rich  S G Webster  H M Blau 《Nature》1989,337(6207):570-573
The localization of gene products is central to the development of cell polarity and pattern specification during embryogenesis. To monitor the distribution of gene products encoded by different nuclei in the same cell in tissue culture, we fused cells of different species to form multinucleated non-dividing heterokaryons. In previous fusion studies, cell-surface antigens and organelles contributed by disparate cell types intermixed within minutes. Using heterokaryons produced with differentiated muscle cells, we demonstrate here that a muscle membrane component, the Golgi apparatus mediating its transport, and a sarcomeric myosin heavy chain are localized in the vicinity of the nuclei responsible for their synthesis. These results provide direct evidence that products (organelle, membrane and structural proteins) derived from individual nuclei can remain localized in myotubes, a finding with implications both for neuromuscular synapse formation and for the carrier state of Duchenne muscular dystrophy.  相似文献   

18.
A brain-specific microRNA regulates dendritic spine development   总被引:6,自引:0,他引:6  
MicroRNAs are small, non-coding RNAs that control the translation of target messenger RNAs, thereby regulating critical aspects of plant and animal development. In the mammalian nervous system, the spatiotemporal control of mRNA translation has an important role in synaptic development and plasticity. Although a number of microRNAs have been isolated from the mammalian brain, neither the specific microRNAs that regulate synapse function nor their target mRNAs have been identified. Here we show that a brain-specific microRNA, miR-134, is localized to the synapto-dendritic compartment of rat hippocampal neurons and negatively regulates the size of dendritic spines--postsynaptic sites of excitatory synaptic transmission. This effect is mediated by miR-134 inhibition of the translation of an mRNA encoding a protein kinase, Limk1, that controls spine development. Exposure of neurons to extracellular stimuli such as brain-derived neurotrophic factor relieves miR-134 inhibition of Limk1 translation and in this way may contribute to synaptic development, maturation and/or plasticity.  相似文献   

19.
20.
A Mikami  K Imoto  T Tanabe  T Niidome  Y Mori  H Takeshima  S Narumiya  S Numa 《Nature》1989,340(6230):230-233
In cardiac muscle, where Ca2+ influx across the sarcolemma is essential for contraction, the dihydropyridine (DHP)-sensitive L-type calcium channel represents the major entry pathway of extracellular Ca2+. We have previously elucidated the primary structure of the rabbit skeletal muscle DHP receptor by cloning and sequencing the complementary DNA. An expression plasmid carrying this cDNA, microinjected into cultured skeletal muscle cells from mice with muscular dysgenesis, has been shown to restore both excitation-contraction coupling and slow calcium current missing from these cells, so that a dual role for the DHP receptor in skeletal muscle transverse tubules is suggested. We report here the complete amino-acid sequence of the rabbit cardiac DHP receptor, deduced from the cDNA sequence. We also show that messenger RNA derived from the cardiac DHP receptor cDNA is sufficient to direct the formation of a functional DHP-sensitive calcium channel in Xenopus oocytes. Furthermore, higher calcium-channel activity is observed when mRNA specific for the polypeptide of relative molecular mass approximately 140,000 (alpha 2-subunit) associated with skeletal muscle DHP receptor is co-injected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号