首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Ag-Cu合金的电子结构   总被引:9,自引:2,他引:7  
依据特征晶体的能量、晶格常数和电子结构的相关性和OA理论的约束条件 ,确定了Ag Cu系Gibbs能函数、原子体积函数和特征晶体的电子结构 .随后 ,任意成分的无序合金和任意有序度的有序合金的电子结构和性质均可计算求得 .  相似文献   

2.
金属Al的电子结构和物理性质   总被引:4,自引:0,他引:4  
依据OA理论,确定了自然态fcc-Al的电子结构为:「Ne」(3sc)^1.87903pc)^0.4982(3sf+3pf)^0.6228,计算了它的势能曲线,晶格常数,结合能,弹性,热膨胀系数随温度的变化。  相似文献   

3.
本文介绍了合金中相的类型与作用,及稀贵金属相结构的研究现状与发展趋势,从研究内容和计算方法方面对存在的问题进行了阐述.提出:(1)贵金属合金相结构的电子、原子层次的结构特征以及相结构的稳定性和形成机制与控制因素;(2)稀贵金属合金相的晶格动力学,热力学性能,热学性能,力学性能及其作为增强相对基体材料性能的影响与其电子、原子结构的关联等研究重点领域及采用的解决方法,并对发展前景进行了展望.  相似文献   

4.
为了全面了解立方烷的性质,本文利用CASTEP程序包基于密度泛函理论的交换关联函数(GGA)方法对立方烷的电子结构和光学性质进行研究。在计算的过程中首先优化立方烷的晶体结构并与实验值进行对比,结果符合很好。立方烷的能带带隙为5.453CV,吸收系数最大峰值为2.509×10^5cm^-1.然后又研究光学性质的吸收谱,反射谱和能量损失函数。  相似文献   

5.
液体-固体(L-S)界面科学是化学、催化、能源甚至生物学中最重要的表面科学, L-S界面双电层(EDL)的形成是由于在固体表面吸附了一层电荷,使液体中的离子重新分布.虽然人们总是假设固体表面最初便存在一层离子电荷,但这层电荷的起源与属性却没有得到广泛的探索,而最近的研究表明,在L-S界面电荷层形成的初始阶段,电子传递起着主导作用.本文综述了近年来在液体-固体接触起电中,包括液体-绝缘体、液体-半导体和液体-金属的电子传递方面的研究进展.考虑到L-S界面上电子传递的存在,重新讨论了EDL的形成,并展望了液液接触起电的模型.  相似文献   

6.
Aln (n = 3, 4, 6, 13, 19)团簇的结构稳定性与形态演化   总被引:1,自引:0,他引:1  
采用第一原理赝势平面波方法, 计算了不同结构形态Aln (n = 3, 4, 6, 13, 19)团簇的几何与电子结构, 通过结合能与HOMO-LUMO能隙表征和分析了其结构稳定性, 采用线性同步转变 (LST)方法考察了其不同结构形态间的演化与转 变. 结果表明: Al3, Al4, Al6, Al13和Al19团簇的稳定结构形态分别为三角形、 菱形、八面体、二十面体、双二十面体. Al3, Al4与Al13团簇不存在亚稳结构. Al6与Al19团簇存在亚稳结构, 其结构形态分别为平行四边形与八面体. Al6团簇亚稳结构与稳定结构的能级差大、转变能垒低, 结构转变容易, 亚稳结构稳定性差. 而Al19团簇亚稳结构与稳定结构的能级差小、转变能垒高, 结构演化不易, 因而实验和理论模拟中能观察到其亚稳结构形态——正八面体的存在.  相似文献   

7.
从理论计算和实验验证两方面进行了氧缺位金红石型TiO2-x薄膜的电子结构和血液相容性关系的研究. 基于局域密度泛函理论, 采用第一性原理方法计算了不同氧缺位浓度下金红石型TiO2-x的电子结构. 计算结果表明, 在现实可行的氧缺位浓度范围内(小于或等于10%), 随着氧缺位浓度的增加, TiO2的禁带宽度增大, 氧化钛的半导体类型由p型向n型转变. 不同氧缺位浓度下TiO2的价带顶主要由O的2p轨道贡献, 导带底主要由Ti的3d轨道贡献. 氧缺位浓度的提高导致了 TiO2导带底电子态密度的增加. 当材料与血液接触时, 氧缺位TiO2-x薄膜的n型半导体和电子态占据导带底特征可抑制血液中纤维蛋白原向材料表面传递电荷, 进而抑制血小板的聚集和活化, 从而提高了金红石型TiO2-x薄膜的血液相容性.  相似文献   

8.
用X射线光电子能谱研究了硼原子对Ni_3Al的Ni2p_(3/2)结合能的作用及其晶界偏聚规律,结果表明,纯Ni_3Al的Ni2p_(3/2)结合能按下列顺序增加:Ni0时,材料呈脆性;当△E_B≤0时,则材料呈延性.结合上述实验规律该判据预测:纯Ni_3Al是脆性的,并且硼韧化Ni_3Al时存在化学计量效应和浓度效应.由此可为开发延性金属间化合物提供一个合金设计原则.  相似文献   

9.
为进一步揭示扩压叶栅中旋涡的结构型式,以理解旋涡对损失的作用机理,主要使用拓扑分析和数值计算的方法,讨论叶片通道中马蹄涡、通道涡、角涡等二次流旋涡的生成、演绎与发展.提出了低能流体区与外部流动区分界面的概念,分析表明通道涡、马蹄涡和角涡都位于分界面内部(低能流体区),而集中脱落涡位于分界面外部(外部流动区).在损失分析方面,采用了流动耗散函数而非熵增来表征损失的大小.结果表明,涡运动与损失的产生存在直接联系,即旋涡的中心附近都是局部损失核心;流道中损失最严重的区域是位于分界面附近而不是位于低能区里.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号