首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种基于RBF神经网络的传感器故障诊断方法   总被引:5,自引:0,他引:5  
针对传感器故障,提出了一种基于RBF神经网络的集成故障诊断方法,用RBF神经网络建立传感器故障模型,对系统的状态和故障参数进行在线估计,然后将故障参数与修正的Bayes分类算法(MB算法)相结合,进行传感器故障在线检测、分离和估计。对连续搅拌釜式反应器(CSTR)的仿真结果表明,该集成故障诊断方法能够对多重传感器进行故障进行快速准确的分离和估计,并对传感器故障具有容错性。  相似文献   

2.
故障诊断知识获取的一种神经网络理论方法   总被引:2,自引:0,他引:2  
基于神经网络的竞争学习机制,提出了一种新的基于神经网络专家系统的自动化生产过程监控的知识获取理论方法.这种理论方法在故障诊断的知识获取上是通过竞争学习机制来实现的,与以往人们一般较常采用的BP学习算法相比,具有算法简单、易于实现及无需教师进行监督等特点.利用此方法,经在一个铣削加工过程监控系统上进行仿真研究表明:这种理论方法是非常有效的.  相似文献   

3.
根据神经网络独特的容错、联想、推测、自适应、自学习等优点,针对BP网络在故障诊断应用中收敛速度慢等不足,研究了基于RBF神经网络的智能故障诊断方法.该诊断方法只需要足够的具有代表性的故障样本用以训练神经网络,然后将归一化的故障信息输入给训练好的神经网络,根据其输出结果就可以判断发生的故障类型.利用该诊断方法,对发动机转子系统故障诊断进行了仿真,仿真结果表明,基于RBF神经网络的智能故障诊断方法效果良好.  相似文献   

4.
5.
滚动轴承作为旋转机械的重要组成部分,其运行安全性受到大量关注,但传统的基于信号处理的时频分析故障诊断方法较为依赖专家知识从而难以广泛应用。结合应用较广的卷积神经网络和长短时记忆网络模型的优点-自动提取振动信号的深层特征信息以及可识别所提取的长时连续的振动信号时序特征信息,提出一种深度特征提取神经网络模型,将原始的振动信号作为模型输入,进而通过多层卷积与长短时记忆网络对振动信号进行故障特征信息提取,可以有效提取滚动轴承振动信号中的深层时序故障特征信息,进而准确辨识滚动轴承不同的故障模式,并且避免了复杂的信号预处理与人工进行信号特征提取的过程。通过凯斯西储大学滚动轴承故障实验的10类健康状态数据验证了所提方法的有效性,并对实验结果进行分析,解释了在迭代过程中出现精度波动的可能原因。  相似文献   

6.
7.
论述了基于离散小波变换系数的特征提取和概率神经网络在机械故障诊断中的应用。该方法利用离散小波获取振动信号各有效频带的能量作为故障参数,用概率神经网络构建设备运行状态模型,根据历史数据确定故障值并设置故障参数。实验结果从应用程序对轴承故障诊断表明,相比传统方法,该方法能够有效地提取测试信号内在的重要信息内容,并增加机械整体故障诊断的准确性,在机械设备故障处理系统中有良好的应用前景。  相似文献   

8.
基于神经网络方法的系统故障诊断   总被引:1,自引:0,他引:1  
在Malek模型下,构造了一个连续Hopfied神经网络来解决多处理系统中最可能的故障处理机集问题,并对此方法进行了仿真。  相似文献   

9.
针对传统故障诊断技术的不足,提出一种基于Kohonen神经网络的故障诊断方法,其使用一种由邻域函数决定权重调整程度的改进SOM算法进行学习,避免基本SOM算法中调整权重前的邻域判断过程,有利于提高网络的学习速度和自适应性.以齿轮故障诊断为例进行Matlab仿真实验,实验结果表明该方法不但可行,而且诊断速度快、准确率高.  相似文献   

10.
故障诊断对于保障电机正常运行有着重要意义,卷积神经网络(CNN)对单一电机故障有着良好的诊断效果.然而传统CNN在处理不同尺寸的数据上存在局限性.针对这一问题,提出了一种基于空间金字塔池化和一维卷积神经网络相结合的故障诊断方法与参数优化策略.该方法不仅使网络可以处理不同尺寸的数据,还降低了网络结构的复杂性和所需运算量.所提出的参数优化策略从理论上解决了诊断过程中可能会发生的金字塔池化的尺度失配问题.仿真结果表明,与传统网络相比,所提出的方法提高了网络结构的鲁棒性与泛化能力,可以更加快速准确地实现电机的故障诊断.  相似文献   

11.
在Malek模型下,构造了一个连续Hopfield神经网络来解多处理机系统中最可能的故障处理机集问题,并对此方法进行了仿真。  相似文献   

12.
根据字符的不同统计特征设计了不同的特征提取方法和分类器。实验表明,本文提出的字符识别方法,对车牌字符识别具有一定的识别率。  相似文献   

13.
传感器故障诊断在化工生产中有着重要地位。该文以小波变换与神经网络方法为基础,提出了一种传感器故障诊断的方法。该方法能够有效区分传感器故障造成的信号变化与过程本身正常波动造成的信号变化,同时在训练神经网络时只需要系统正常状态下的样本,克服了传感器故障样本稀少的困难。此外,该方法可以在传感器发生故障后估计出正常的模拟信号。实验证明,该方法能够有效完成故障诊断,并可以判断出传感器的故障类型。  相似文献   

14.
针对BP(Back Propagation)神经网络在进行故障诊断时准确度低、收敛速度慢等问题,设计了一种基于误差指针改进的BP(Improved Back Propagation,IBP)神经网络,并通过遗传算法(Genetic Algorithm,GA)对这种改进后的神经网络进行优化,从而建立了基于GA-IBP神经网络的故障诊断模型.使用典型三相逆变电路中IGBT开路故障数据作为样本,对所设计的模型进行了仿真分析.结果表明:改进后的网络模型收敛速度优于典型BP神经网络和基于GA算法优化的典型BP神经网络,故障诊断精度分别提高15%和4.5%.  相似文献   

15.
基于神经网络的轴承故障诊断方法   总被引:2,自引:0,他引:2  
研究了基于神经网络的轴承故障诊断方法,应用于球轴承、圆锥轴承和圆柱轴承在轴承疲劳试验机上实际运行产生的各种真实故障的诊断,结果表明:该方法具有较好的效果。  相似文献   

16.
模拟电路故障诊断的开关电流神经网络方法   总被引:2,自引:0,他引:2  
以等效电源为变量,构造了线性模拟电路故障诊断的优化神经网络,基于罚函数方法提出了开关电流神经优化求解器,并给出实例,由Pspice验证其可行性。  相似文献   

17.
为准确诊断汽车发动机常发生的单缸失火和双缸失火故障, 利用概率神经网络分析发动机转速与曲轴位移角度诊断发动机失火故障。在AMEsim 软件环境下搭建一款四缸发动机模型, 利用故障注入的方式模拟发动机失火, 提取发动机转速和曲轴角度位移数据, 在Matlab 环境下进行数据处理与分组, 建立概率神经网络PNN(Probabilistic Neural Network)进行训练与测试。实验结果表明, 发动机转速与曲轴转角位移能有效反应发动机真实运行情况, 训练好的PNN 可对发动机单缸、双缸失火进行准确的诊断和定位。该方法具有简洁、经济、高效和准确度高等优点。  相似文献   

18.
本文论述了BP神经网络的结构和学习算法以及应用到故障诊断中的原理和过程。详细地分析了拖拉机变速箱的工作原理,并讨论了利用BP神经网络的优点,应用到该工程的故障诊断中。通过试验证明,基于神经网络的故障诊断已经逐步走向成熟。  相似文献   

19.
本利用神经网络(NN)知识并行处理,自学习及联想记忆等功能,建立了基于网络推理的专家系统,论述了NN的结构,算法参数的确定,系统知识获取和离线/在线自学习功能提出了NN数值推理和ES深层逻辑概念相结合的输入/输出转换机制与NN推理的解释机制。研究表明系统具有良实用性。  相似文献   

20.
基于神经网络的故障诊断推理方法   总被引:12,自引:0,他引:12  
针对传统诊断技术的局限性,研究了基于BP模型神经网络的故障诊断推理方法,它只需选择足够的具有代表性的故障样本训练神经网络,将代表故障的信息输入给训练好的神经网络,根据神经网络的输出结果,就可以判断发生故障的类型.神经网络一旦训练好,由于其具有容错性,不仅能诊断出已经出现过的故障,还能在一定范围内诊断出从未出现过的故障,使故障诊断智能化和简单化.仿真结果表明,基于神经网络的故障诊断方法是行之有效的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号