首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Caspases function in both apoptosis and inflammatory cytokine processing and thereby have a role in resistance to sepsis. Here we describe a novel role for a caspase in dampening responses to bacterial infection. We show that in mice, gene-targeted deletion of caspase-12 renders animals resistant to peritonitis and septic shock. The resulting survival advantage was conferred by the ability of the caspase-12-deficient mice to clear bacterial infection more efficiently than wild-type littermates. Caspase-12 dampened the production of the pro-inflammatory cytokines interleukin (IL)-1beta, IL-18 (interferon (IFN)-gamma inducing factor) and IFN-gamma, but not tumour-necrosis factor-alpha and IL-6, in response to various bacterial components that stimulate Toll-like receptor and NOD pathways. The IFN-gamma pathway was crucial in mediating survival of septic caspase-12-deficient mice, because administration of neutralizing antibodies to IFN-gamma receptors ablated the survival advantage that otherwise occurred in these animals. Mechanistically, caspase-12 associated with caspase-1 and inhibited its activity. Notably, the protease function of caspase-12 was not necessary for this effect, as the catalytically inactive caspase-12 mutant Cys299Ala also inhibited caspase-1 and IL-1beta production to the same extent as wild-type caspase-12. In this regard, caspase-12 seems to be the cFLIP counterpart for regulating the inflammatory branch of the caspase cascade. In mice, caspase-12 deficiency confers resistance to sepsis and its presence exerts a dominant-negative suppressive effect on caspase-1, resulting in enhanced vulnerability to bacterial infection and septic mortality.  相似文献   

2.
Nakagawa T  Zhu H  Morishima N  Li E  Xu J  Yankner BA  Yuan J 《Nature》2000,403(6765):98-103
Apoptosis, or cellular suicide, is important for normal development and tissue homeostasis, but too much or too little apoptosis can also cause disease. The family of cysteine proteases, the so- called caspases, are critical mediators of programmed cell death, and thus far 14 family members have been identified. Some of these, such as caspase-8, mediate signal transduction downstream of death receptors located on the plasma membrane. Others, such as caspase-9, mediate apoptotic signals after mitochondrial damage. Stress in the endoplasmic reticulum (ER) can also result in apoptosis. Here we show that caspase-12 is localized to the ER and activated by ER stress, including disruption of ER calcium homeostasis and accumulation of excess proteins in ER, but not by membrane- or mitochondrial-targeted apoptotic signals. Mice that are deficient in caspase-12 are resistant to ER stress-induced apoptosis, but their cells undergo apoptosis in response to other death stimuli. Furthermore, we show that caspase-12-deficient cortical neurons are defective in apoptosis induced by amyloid-beta protein but not by staurosporine or trophic factor deprivation. Thus, caspase-12 mediates an ER-specific apoptosis pathway and may contribute to amyloid-beta neurotoxicity.  相似文献   

3.
Apoptotic cells release 'find-me' signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 overexpression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the 'selective' plasma membrane permeability of early apoptotic cells to specific dyes. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases.  相似文献   

4.
Activation of microglia and inflammation-mediated neurotoxicity are suggested to play a decisive role in the pathogenesis of several neurodegenerative disorders. Activated microglia release pro-inflammatory factors that may be neurotoxic. Here we show that the orderly activation of caspase-8 and caspase-3/7, known executioners of apoptotic cell death, regulate microglia activation through a protein kinase C (PKC)-δ-dependent pathway. We find that stimulation of microglia with various inflammogens activates caspase-8 and caspase-3/7 in microglia without triggering cell death in vitro and in vivo. Knockdown or chemical inhibition of each of these caspases hindered microglia activation and consequently reduced neurotoxicity. We observe that these caspases are activated in microglia in the ventral mesencephalon of Parkinson's disease (PD) and the frontal cortex of individuals with Alzheimer's disease (AD). Taken together, we show that caspase-8 and caspase-3/7 are involved in regulating microglia activation. We conclude that inhibition of these caspases could be neuroprotective by targeting the microglia rather than the neurons themselves.  相似文献   

5.
Apoptosis is an evolutionarily conserved cell suicide process executed by cysteine proteases (caspases) and regulated by the opposing factions of the Bcl-2 protein family. Mammalian caspase-9 and its activator Apaf-1 were thought to be essential, because mice lacking either of them display neuronal hyperplasia and their lymphocytes and fibroblasts seem resistant to certain apoptotic stimuli. Because Apaf-1 requires cytochrome c to activate caspase-9, and Bcl-2 prevents mitochondrial cytochrome c release, Bcl-2 is widely believed to inhibit apoptosis by safeguarding mitochondrial membrane integrity. Our results suggest a different, broader role, because Bcl-2 overexpression increased lymphocyte numbers in mice and inhibited many apoptotic stimuli, but the absence of Apaf-1 or caspase-9 did not. Caspase activity was still discernible in cells lacking Apaf-1 or caspase-9, and a potent caspase antagonist both inhibited apoptosis and retarded cytochrome c release. We conclude that Bcl-2 regulates a caspase activation programme independently of the cytochrome c/Apaf-1/caspase-9 'apoptosome', which seems to amplify rather than initiate the caspase cascade.  相似文献   

6.
Specific adaptors regulate the activation of initiator caspases; for example, FADD and Apaf-1 engage caspases 8 and 9, respectively. The adaptors ASC, Ipaf and RIP2 have each been proposed to regulate caspase-1 (also called interleukin (IL)-1 converting enzyme), which is activated within the 'inflammasome', a complex comprising several adaptors. Here we show the impact of ASC-, Ipaf- or RIP2-deficiency on inflammasome function. ASC was essential for extracellular ATP-driven activation of caspase-1 in toll-like receptor (TLR)-stimulated macrophages. Accordingly, ASC-deficient macrophages exhibited defective maturation of IL-1beta and IL-18, and ASC-null mice were resistant to lipopolysaccharide-induced endotoxic shock. Furthermore, activation of caspase-1 in response to an intracellular pathogen (Salmonella typhimurium) was abrogated severely in ASC-null macrophages. Unexpectedly, Ipaf-deficient macrophages activated caspase-1 in response to TLR plus ATP stimulation but not S. typhimurium. Caspase-1 activation was not compromised by loss of RIP2. These data show that whereas ASC is key to caspase-1 activation within the inflammasome, Ipaf provides a special conduit to the inflammasome for signals triggered by intracellular pathogens. Notably, cell death triggered by stimuli that engage caspase-1 was ablated in macrophages lacking either ASC or Ipaf, suggesting a coupling between the inflammatory and cell death pathways.  相似文献   

7.
Inhibition of JNK activation through NF-kappaB target genes.   总被引:26,自引:0,他引:26  
G Tang  Y Minemoto  B Dibling  N H Purcell  Z Li  M Karin  A Lin 《Nature》2001,414(6861):313-317
  相似文献   

8.
Endonuclease G is an apoptotic DNase when released from mitochondria.   总被引:85,自引:0,他引:85  
L Y Li  X Luo  X Wang 《Nature》2001,412(6842):95-99
Nucleosomal fragmentation of DNA is a hallmark of apoptosis (programmed cell death), and results from the activation of nucleases in cells undergoing apoptosis. One such nuclease, DNA fragmentation factor (DFF, a caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD)), is capable of inducing DNA fragmentation and chromatin condensation after cleavage by caspase-3 (refs 2,3,4). However, although transgenic mice lacking DFF45 or its caspase cleavage site have significantly reduced DNA fragmentation, these mice still show residual DNA fragmentation and are phenotypically normal. Here we report the identification and characterization of another nuclease that is specifically activated by apoptotic stimuli and is able to induce nucleosomal fragmentation of DNA in fibroblast cells from embryonic mice lacking DFF. This nuclease is endonuclease G (endoG), a mitochondrion-specific nuclease that translocates to the nucleus during apoptosis. Once released from mitochondria, endoG cleaves chromatin DNA into nucleosomal fragments independently of caspases. Therefore, endoG represents a caspase-independent apoptotic pathway initiated from the mitochondria.  相似文献   

9.
Innate immunity is a fundamental defence response that depends on evolutionarily conserved pattern recognition receptors for sensing infections or danger signals. Nucleotide-binding and oligomerization domain (NOD) proteins are cytosolic pattern-recognition receptors of paramount importance in the intestine, and their dysregulation is associated with inflammatory bowel disease. They sense peptidoglycans from commensal microorganisms and pathogens and coordinate signalling events that culminate in the induction of inflammation and anti-microbial responses. However, the signalling mechanisms involved in this process are not fully understood. Here, using genome-wide RNA interference, we identify candidate genes that modulate the NOD1 inflammatory response in intestinal epithelial cells. Our results reveal a significant crosstalk between innate immunity and apoptosis and identify BID, a BCL2 family protein, as a critical component of the inflammatory response. Colonocytes depleted of BID or macrophages from Bid(-/-) mice are markedly defective in cytokine production in response to NOD activation. Furthermore, Bid(-/-) mice are unresponsive to local or systemic exposure to NOD agonists or their protective effect in experimental colitis. Mechanistically, BID interacts with NOD1, NOD2 and the IκB kinase (IKK) complex, impacting NF-κB and extracellular signal-regulated kinase (ERK) signalling. Our results define a novel role of BID in inflammation and immunity independent of its apoptotic function, furthering the mounting evidence of evolutionary conservation between the mechanisms of apoptosis and immunity.  相似文献   

10.
Caspase-3 plays a central role in the execution of apoptosis. Besides many substrates of caspase-3, mitochondria seem to be one of the candidate targets in the apoptotic process. We evaluated the effects of caspase-3 on the isolated mitochondria in detail, and especially focused on the mechanism involved in mitochondrial functions, which were not fully assessed till now. Our results showed that recombinant caspase-3 induced the increase of superoxide production, the dissipation of mitochondrial membrane potential and rate increasing of mitochondrial state 4 respiration. Caspases inhibitor, z-VAD-fmk can inhibit these effects of caspase-3 on mitochondria. Bcl-xL and cyclosporin A were also shown to be able to inhibit these changes. These results suggested a possible mechanism in caspase-3 induced disruption of mitochondrial membrane barrier which formed a positive feedback loop in apoptosis.  相似文献   

11.
S Sahara  M Aoto  Y Eguchi  N Imamoto  Y Yoneda  Y Tsujimoto 《Nature》1999,401(6749):168-173
Apoptosis is defined by several unique morphological nuclear changes, such as chromatin condensation and nuclear fragmentation. These changes are triggered by the activation of a family of cysteine proteases called caspases, and caspase-activated DNase (CAD/DFF40) and lamin protease (caspase-6) have been implicated in some of these changes. CAD/DFF40 induces chromatin condensation in purified nuclei, but distinct caspase-activated factor(s) may be responsible for chromatin condensation. Here we use an in vitro system to identify a new nuclear factor, designated Acinus, which induces apoptotic chromatin condensation after cleavage by caspase-3 without inducing DNA fragmentation. Immunodepletion experiments showed that Acinus is essential for apoptotic chromatin condensation in vitro, and an antisense study revealed that Acinus is also important in the induction of apoptotic chromatin condensation in cells.  相似文献   

12.
细胞凋亡是多细胞生物清除多余、损伤或有潜在危险细胞的一种主要生理机制.蛋白水解酶是细胞凋亡研究的重要对象,其中大部分工作都集中在探索caspases的功能和调控上.近年来,越来越多的证据显示一些非caspases蛋白酶如位于溶酶体中的cathepsins特别是cathepsin B(CTSB)参与细胞凋亡过程.溶酶体cathepsins既可以与caspases协同作用,也可以不依赖于caspases独立执行凋亡功能.选取人前列腺癌PC-3细胞株作为研究对象,通过检测PC-3细胞对TNFα、D-sphingosine两种凋亡诱导剂和caspases、cathepsins抑制剂的应答反应,以及细胞凋亡过程中溶酶体、线粒体的结构变化,证实了D-sphingosine引起PC-3细胞死亡的效应主要通过释放溶酶体中蛋白酶CTSB实现,CTSB和caspases均参与介导TNFα诱导的PC-3细胞凋亡过程,并且很可能在不同的凋亡信号通路中发挥作用.  相似文献   

13.
Apoptosis is a form of programmed cell death that is controlled by aspartate-specific cysteine proteases called caspases. In the immune system, apoptosis counters the proliferation of lymphocytes to achieve a homeostatic balance, which allows potent responses to pathogens but avoids autoimmunity. The CD95 (Fas, Apo-1) receptor triggers lymphocyte apoptosis by recruiting Fas-associated death domain (FADD), caspase-8 and caspase-10 proteins into a death-inducing signalling complex. Heterozygous mutations in CD95, CD95 ligand or caspase-10 underlie most cases of autoimmune lymphoproliferative syndrome (ALPS), a human disorder that is characterized by defective lymphocyte apoptosis, lymphadenopathy, splenomegaly and autoimmunity. Mutations in caspase-8 have not been described in ALPS, and homozygous caspase-8 deficiency causes embryonic lethality in mice. Here we describe a human kindred with an inherited genetic deficiency of caspase-8. Homozygous individuals manifest defective lymphocyte apoptosis and homeostasis but, unlike individuals affected with ALPS, also have defects in their activation of T lymphocytes, B lymphocytes and natural killer cells, which leads to immunodeficiency. Thus, caspase-8 deficiency in humans is compatible with normal development and shows that caspase-8 has a postnatal role in immune activation of naive lymphocytes.  相似文献   

14.
Riedl SJ  Li W  Chao Y  Schwarzenbacher R  Shi Y 《Nature》2005,434(7035):926-933
Apoptosis is executed by caspases, which undergo proteolytic activation in response to cell death stimuli. The apoptotic protease-activating factor 1 (Apaf-1) controls caspase activation downstream of mitochondria. During apoptosis, Apaf-1 binds to cytochrome c and in the presence of ATP/dATP forms an apoptosome, leading to the recruitment and activation of the initiator caspase, caspase-9 (ref. 2). The mechanisms underlying Apaf-1 function are largely unknown. Here we report the 2.2-A crystal structure of an ADP-bound, WD40-deleted Apaf-1, which reveals the molecular mechanism by which Apaf-1 exists in an inactive state before ATP binding. The amino-terminal caspase recruitment domain packs against a three-layered alpha/beta fold, a short helical motif and a winged-helix domain, resulting in the burial of the caspase-9-binding interface. The deeply buried ADP molecule serves as an organizing centre to strengthen interactions between these four adjoining domains, thus locking Apaf-1 in an inactive conformation. Apaf-1 binds to and hydrolyses ATP/dATP and their analogues. The binding and hydrolysis of nucleotides seem to drive conformational changes that are essential for the formation of the apoptosome and the activation of caspase-9.  相似文献   

15.
X连锁凋亡抑制蛋白(XIAP)是哺乳动物中具有抑制细胞凋亡作用的蛋白,是IAPs家族的一员.XIAP通过杆状病毒IAP重复序列(BIR)直接与起始以及效应caspases结合,抑制了细胞凋亡的线粒体途径,也可以通过NF-κB途径抑制细胞表面受体介导的凋亡.XIAP具有不同于Bcl-2的作用机制,是IAPs家族中最具有抑制活性的一个.XIAP的作用受到线粒体释放的蛋白Smac的拮抗,以及受到自身具有泛素连接酶E3活性的RING指结构域的调节.阐述XIAP抑制caspase以及Smac等拮抗XIAP的机理对于治疗肿瘤以及过度凋亡疾病具有重要的意义.  相似文献   

16.
A novel cloned Spodoptera littoralis Nucleopolyhedrovirus (SlNPV) p49 gene is able to suppress apoptosis of insect cells Sf9 triggered by virus. The amino acid sequence of P49 expressed in baculovirus expression system is the same as predicted, indicating that the expression of P49 is correct. Metabolic labeling revealed that p49 was able to be expressed both in the early and late phases after the viral infection, and only in the late phase was the expression driven by polyhedra promoter, but the amount of expression was higher than that of wtSlNPV. In summary, the early gene of SlNPV p49 as well as p35 of AcMNPV is able to be expressed in the late phase, but its promoter is weaker compared with polyhedra promoter. In vitro, P49 can be cut by Bm caspase and human caspase-3, yielding 10 and 40 ku fragments. Purified P49 blocks the substrate cleavage by Bm caspase and human caspase-3, showing that P49 inhibits downstream caspases in the apoptotic pathway.  相似文献   

17.
在缺氧或呼吸链抑制剂存在条件下,细胞的呼吸链受到抑制,线粒体的功能受到直接干扰,细胞色素C通过线粒体的外膜特异性通道进入细胞浆内,启动了procaspase-3等一系列凋亡因子,细胞发生与线粒体相关的凋亡。另一方面,因线粒体的功能被抑制,细胞内的钙离子浓度升高,calpain被激活并裂解细胞膜蛋白及细胞内的生物化学分子,促进了细胞凋亡的发生。鱼藤酮作为线粒体呼吸链complexI的抑制剂可导致细胞凋亡,其凋亡途径不仅与caspase介导的机制有关,还有可能与calpain有关。  相似文献   

18.
Structural and biochemical basis of apoptotic activation by Smac/DIABLO   总被引:60,自引:0,他引:60  
Chai J  Du C  Wu JW  Kyin S  Wang X  Shi Y 《Nature》2000,406(6798):855-862
Apoptosis (programmed cell death), an essential process in the development and homeostasis of metazoans, is carried out by caspases. The mitochondrial protein Smac/DIABLO performs a critical function in apoptosis by eliminating the inhibitory effect of IAPs (inhibitor of apoptosis proteins) on caspases. Here we show that Smac/DIABLO promotes not only the proteolytic activation of procaspase-3 but also the enzymatic activity of mature caspase-3, both of which depend upon its ability to interact physically with IAPs. The crystal structure of Smac/DIABLO at 2.2 A resolution reveals that it homodimerizes through an extensive hydrophobic interface. Missense mutations inactivating this dimeric interface significantly compromise the function of Smac/DIABLO. As in the Drosophila proteins Reaper, Grim and Hid, the amino-terminal amino acids of Smac/DIABLO are indispensable for its function, and a seven-residue peptide derived from the amino terminus promotes procaspase-3 activation in vitro. These results establish an evolutionarily conserved structural and biochemical basis for the activation of apoptosis by Smac/DIABLO.  相似文献   

19.
A novel cloned Spodoptera littoralis Nucleopolyhedrovirus (SlNPV) p49 gene is able to suppress apoptosis of insect cells Sf9 triggered by virus. The amino acid sequence of P49 expressed in baculovirus expression system is the same as predicted, indicating that the expression of P49 is correct. Metabolic labeling revealed that p49 was able to be expressed both in the early and late phases after the viral infection, and only in the late phase was the expression driven by polyhedra promoter, but the amount of expression was higher than that of wtSlNPV. In summary, the early gene of SlNPV p49 as well as p35 of AcMNPV is able to be expressed in the late phase, but its promoter is weaker compared with polyhedra promoter. In vitro, P49 can be cut by Bm caspase and human caspase-3, yielding 10 and 40 ku fragments. Purified P49 blocks the substrate cleavage by Bm caspase and human caspase-3, showing that P49 inhibits downstream caspases in the apoptotic pathway.  相似文献   

20.
As an inhibitor of poly(ADP-ribose) polymerase (PARP), nicotinamide has a restraining effect on apoptosis at certain low concentrations. In our present study, apoptosis induced by high concentrations of nicotinamide was observed in tobacco suspension cells. When cells were preincubated with 250 mmol/L nicotinamide for 24 h, the hallmarks of apoptosis were detected, including DNA fragments increasing in size by multiples of 180-200 bp,the condensation and peripheral distribution of nuclear chromatin, and a positive reaction to the TUNEL assay. At the same time, the degradation of PARP and the reduction in the potential of the inner membrane of mitochondria appeared in apoptotic cells induced by high concentrations of nicotinamide. This result indicates that apoptosis induced by high concentrations of nicotinamide is associated with caspase-3-1ike activity and with the opening of mitochondrial permeability pores. These results partially support the hypothesis that high concentrations of PARP inhibitor could force cells to enter an apoptotic pathway by delay of DNA repair in replicating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号