首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell cycle of mouse embryonic tissue under continuous gamma-irradiation   总被引:1,自引:0,他引:1  
D E Wimber  L F Lamerton 《Nature》1965,207(995):432-433
  相似文献   

3.
4.
5.
6.
7.
8.
Organelle transport along microtubules is believed to be mediated by organelle-associated force-generating molecules. Two classes of microtubule-based organelle motors have been identified: kinesin and cytoplasmic dynein. To correlate the mechanochemical basis of force generation with the in vivo behaviour of organelles, it is important to quantify the force needed to propel an organelle along microtubules and to determine the force generated by a single motor molecule. Measurements of force generation are possible under selected conditions in vitro, but are much more difficult using intact or reactivated cells. Here we combine a useful model system for the study of organelle transport, the giant amoeba Reticulomyxa, with a novel technique for the non-invasive manipulation of and force application to subcellular components, which is based on a gradient-force optical trap, also referred to as 'optical tweezers'. We demonstrate the feasibility of using controlled manipulation of actively translocating organelles to measure direct force. We have determined the force driving a single organelle along microtubules, allowing us to estimate the force generated by a single motor to be 2.6 x 10(-7) dynes.  相似文献   

9.
Murine embryonic stem (ES) cells are pluripotent cell lines established directly from the early embryo which can contribute differentiated progeny to all adult tissues, including the germ-cell lineage, after re-incorporation into the normal embryo. They provide both a cellular vector for the generation of transgenic animals and a useful system for the identification of polypeptide factors controlling differentiation processes in early development. In particular, medium conditioned by Buffalo rat liver cells contains a polypeptide factor, ES cell differentiation inhibitory activity (DIA), which specifically suppresses the spontaneous differentiation of ES cells in vitro, thereby permitting their growth as homogeneous stem cell populations in the absence of heterologous feeder cells. ES cell pluripotentiality, including the ability to give rise to functional gametes, is preserved after prolonged culture in Buffalo rat liver media as a source of DIA. Here, we report that purified DIA is related in structure and function to the recently identified hematopoietic regulatory factors human interleukin for DA cells and leukaemia inhibitory factor. DIA and human interleukin DA/leukaemia inhibitory factor have thus been identified as related multifunctional regulatory factors with distinct biological activities in both early embryonic and hematopoietic stem cell systems.  相似文献   

10.
S Fraser  R Keynes  A Lumsden 《Nature》1990,344(6265):431-435
In the chick embryo hindbrain, morphological segmentation into rhombomeres is matched by metameric patterns of early neuronal differentiation and axonogenesis. Boundaries between rhombomeres coincide with boundaries of expression of murine regulatory genes. By clonal analysis using intracellular marking, we show here that the rhombomere boundaries are partitions across which cells do not move. When a parent cell is marked before the appearance of rhombomere boundaries, the resulting clone is able to spread into the neighbouring rhombomere. When marked after boundary appearance, the clone still expands freely within the rhombomere of origin, but it is now restricted at the boundaries. Rhombomeres in the chick embryo thus behave like polyclonal units, raising the possibility that they are analogous to the compartments of insects.  相似文献   

11.
细胞周期检测作为生物相容性评价指标的研究   总被引:9,自引:0,他引:9  
应用体外细胞培养法,观察不同质量分数羟基磷灰石浸提液对L-929细胞的细胞学形态的影响,同时采用MTT比色法评价羟基磷灰石对L-929生长和增殖的影响,流式细胞仪检测羟基磷灰石浸提液对L-929 细胞生长周期及凋亡的影响.结果表明,羟基磷灰石浸提液对体外培养的细胞形态无明显影响,对细胞生长和增殖无明显抑制作用;不同质量分数材料浸提液的细胞毒性为0~1级;随羟基磷灰石浸提液质量分数的升高,细胞凋亡率逐渐上升;50%、75%、100%羟基磷灰石浸提液组能明显降低G0/G1期细胞比例,增加S,G2/M期细胞比例,能增加L-929细胞DNA的合成,促进细胞生长和组织修复.细胞周期检测是生物材料生物相容性评价的一种可靠方法和指标.  相似文献   

12.
13.
14.
本研究中,通过检测killin在其它p53下游相关基因缺失的情况下能否激活细胞凋亡,证明了p53通过killin介导的S期抑制以及细胞凋亡与p21、puma和bax通路没有直接关系.另外通过将EGFP-PCNA和RFP-killin表达质粒共同转染到cosE5细胞中,并观察细胞处于不同时期时Killin蛋白的分布情况,发现在细胞S期中Killin与PCNA的核定位呈现相互排斥的点状分布,与先前BrdU标记结果吻合.这一结果再次印证了Killin在S期可能抑制DNA复制.同时Killin被观察到在非S期时聚集于核仁内,从而可能影响核糖体RNA的合成.这些发现意味着killin作为主要的p53靶基因之一,可能在细胞周期不同检查点进行调控.  相似文献   

15.
家禽胚胎干细胞的研究进展   总被引:1,自引:0,他引:1  
阐述了干细胞及胚胎干细胞的概念,它的发展历程,着重讨论了家禽胚胎发育的特点以及家禽胚胎干细胞的分离与体外培养方法及应用前景,将来的发展方向。  相似文献   

16.
Biondi EG  Reisinger SJ  Skerker JM  Arif M  Perchuk BS  Ryan KR  Laub MT 《Nature》2006,444(7121):899-904
How bacteria regulate cell cycle progression at a molecular level is a fundamental but poorly understood problem. In Caulobacter crescentus, two-component signal transduction proteins are crucial for cell cycle regulation, but the connectivity of regulators involved has remained elusive and key factors are unidentified. Here we identify ChpT, an essential histidine phosphotransferase that controls the activity of CtrA, the master cell cycle regulator. We show that the essential histidine kinase CckA initiates two phosphorelays, each requiring ChpT, which lead to the phosphorylation and stabilization of CtrA. Downregulation of CckA activity therefore results in the dephosphorylation and degradation of CtrA, which in turn allow the initiation of DNA replication. Furthermore, we show that CtrA triggers its own destruction by promoting cell division and inducing synthesis of the essential regulator DivK, which feeds back to downregulate CckA immediately before S phase. Our results define a single integrated circuit whose components and connectivity can account for the cell cycle oscillations of CtrA in Caulobacter.  相似文献   

17.
RecR protein, a functional equivalent of Rad52 in eukaryotes, plays a critical role in the RecF pathway of homologous recombination in Escherichia coli. By constructing and expressing the recR-yfp hybrid gene, the distribution of the RecR-YFP fusion protein was visualized in E. coli by fluorescent microscopy. Our results showed that RecR proteins can be localized predominantly in the nucleoid region of E. coli. By measuring the UV resistance of a recR mutant carrying the recR-yfp gene in the plasmid, the expressed RecR-YFP was found to be functional in improving the UV resistance of the recR deficiency strain.  相似文献   

18.
Effect of magnesium on horizontal cell activity in the skate retina   总被引:20,自引:0,他引:20  
J E Dowling  H Ripps 《Nature》1973,242(5393):101-103
  相似文献   

19.
T Malinski  Z Taha 《Nature》1992,358(6388):676-678
Nitric oxide is an important bioregulatory molecule, being responsible, for example, for activity of endothelium-derived relaxing factor (EDRF). Acute hypertension, diabetes, ischaemia and atherosclerosis are associated with abnormalities of EDRF. Nitric oxide is thought to be a retrograde messenger in the central nervous system. The technology is not yet available for rapid detection of NO released by a single cell in the presence of oxygen and/or nitrite, so the release, distribution and reactivity of endogenous NO in biological systems cannot be analysed. Here we describe a porphyrinic microsensor that we have developed and applied to monitoring NO release in a microsystem. We selectively measured in situ the NO released from a single cell with a response time of less than 10 ms. The microsensor consists of p-type semiconducting polymeric porphyrin and a cationic exchanger (Nafion) deposited on a thermally sharpened carbon fibre with a tip diameter of approximately 0.5 microns. The microsensor, which can be operated in either the amperometric or voltammetric mode, is characterized by a linear response up to 300 microM and a detection limit of 10 nM. Nitric oxide at the level of 10(-20) mols can be detected in a single cell.  相似文献   

20.
在细胞周期运转过程中,有多种蛋白、复合物和细胞周期检测点等复杂物质的参与,这些物质共同调节并控制着细胞周期的运转过程.这些物质中的一种或几种产生变化,都会导致细胞周期无法向下正常转换,扰乱并使细胞周期失常,引起细胞不受控地增殖.而对参与细胞周期运转的相关蛋白进行调控,能够使肿瘤细胞的活性得到抑制,并进一步阻滞了肿瘤细胞的无限增殖,达到治疗肿瘤的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号