首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过水热法制备了氢型钛纳米管(H-TiNT),采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)对钛纳米管进行表征.以H2O2为氧化剂,H-TiNT为催化剂,研究H-TiNT对二苯并噻吩(DBT)、噻吩(Th)、苯并噻吩(BT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)4种模型含硫化合物的催化氧化脱硫性能,考察反应温度、n(O)/n(S)、催化剂用量对氧化脱除DBT效果的影响.结果表明:H-TiNT对不同模型化合物的脱除活性次序为:DBTBTTh4,6-DMDBT.在反应温度为40,℃、催化剂用量为6.6,g/L、n(O)/n(S)=4的条件下,DBT脱除率几乎达到100%,,并且催化剂重复使用5次后活性没有明显下降.  相似文献   

2.
微波辐射下柴油的催化氧化脱硫效果研究   总被引:3,自引:1,他引:2  
将苯并噻吩(BT)和二苯并噻吩(DBT)分别溶于正辛烷配成模型油,以H2O2为氧化剂,研究普通加热和微波辐射加热下磷钼酸催化模型油和直馏柴油的氧化脱硫效果.分析了催化剂用量、H2O2初始浓度、反应温度和反应时间等对DBT、BT脱除率的影响,分析了不同萃取条件下的柴油脱硫率和回收率.结果表明,微波辐射加热下,DBT、BT的脱除率比普通加热分别提高了7.7倍和3.7倍;在70℃和400W微波功率下,DBT、BT的脱除率分别为95.4%和62.3%;催化剂用量、H2O2初始浓度、反应温度和反应时间等对DBT、BT的氧化脱除率均有影响;v(萃取剂)/v(柴油)为1/4时,采用DMF萃取1次,柴油的脱硫率为61.8%,回收率为98.4%,萃取次数增加,柴油脱硫率提高,而回收率明显下降.  相似文献   

3.
微波辐射磷钼酸镧盐催化柴油氧化脱硫研究   总被引:2,自引:0,他引:2  
 研究了微波辐射下磷钼酸镧盐催化模型油和直馏柴油的氧化脱硫反应,并比较了不同萃取条件下柴油的脱硫率和回收率.结果表明,在相同的反应条件下,微波辐射加热时DBT,BT的脱除率比普通加热分别提高了7.5倍和3.9倍.二苯并噻吩和苯并噻吩的氧化反应都符合表观一级反应动力学规律.在70℃和400W微波功率下,DBT,BT的脱除率可分别达到94.0%和91.2%.直馏柴油氧化脱硫的最佳反应条件为:剂油质量比为7.1mg/g,H2O2初始浓度为0.44mol/L,微波功率为400W,反应温度为70℃和反应时间为120min.当V(DMF)/V(柴油)为1/4和萃取1次时,柴油脱硫率为64.5%,回收率为97.6%,当提高V(DMF)/V(柴油)或萃取次数,柴油的脱硫率提高了,但回收率却明显下降.在氧化脱硫过程中,首先过氧化氢亲核进攻催化剂的活性中心Mo(Ⅵ),然后氧化噻吩类形成亚砜,最后亚砜进一步被氧化生成砜.  相似文献   

4.
磷钼酸季铵盐催化柴油氧化脱硫研究   总被引:3,自引:1,他引:2  
以十八烷基三甲基磷钼酸铵作催化剂、H2O2作氧化剂,对模型油和直馏柴油进行了氧化脱硫研究.结果表明,相同反应条件下,以磷钼酸季铵盐作催化剂时,二苯并噻吩(DBT)和苯并噻吩(BT)的脱除率比磷钼酸作催化剂分别提高了5.3倍和2.4倍;在70℃下反应2.5h,DBT、BT的脱除率分别达到100%和40.5%;动力学研究表明,DBT、BT的催化氧化反应皆符合表观一级动力学规律,其活化能分别为22.5kJ/mol和62.4kJ/mol;各反应条件对直馏柴油脱硫率的影响大小顺序为:催化剂用量>反应时间>氧化剂用量>反应温度;在m(催化剂)/m(柴油)=1.8%、V(H2O2)/V(柴油)=2.5%、反应温度70℃、反应时间3h条件下,柴油的脱硫率达 88.7% ,收得率不低于99%.  相似文献   

5.
以硅胶为载体,Ni改性磷钨杂多酸为主剂,采用过饱和二次浸渍的方法制备了负载型杂多酸超深度脱硫催化剂.分别以烷基噻吩的正辛烷体系和催化裂化(FCC)汽油为研究对象,考查了Ni负载量、催化剂焙烧温度、催化剂的用量、反应时间、反应温度、氧化剂用量等条件对脱除烷基噻吩硫效果的影响;研究结果表明脱除烷基噻吩硫的适宜条件为:催化剂量为0.15g/50mL,氧化剂量为0.3mL/50mL,反应温度为60℃,反应时间3h.在此条件下,模拟体系的烷基噻吩硫的脱除率为100%,FCC汽油的脱硫率为97.3%,精制油收率不低于99%.并探究了负载型Ni改性杂多酸催化氧化脱除烷基噻吩硫的反应机理.  相似文献   

6.
以四甲基乙二胺和三乙烯二胺为原料合成4种双季铵盐,经元素分析和核磁共振氢谱(1H NMR)表征确认其结构。催化活性检测发现,当反应温度为80℃、氧气压力为0.3 MPa及反应时间为7 h时,4种季铵盐协同N-羟基邻苯二甲酰亚胺(NHPI)催化氧化乙苯的转化率达到84.5%,苯乙酮的选择性达到88.1%。  相似文献   

7.
采用溶胶—凝胶法制备改性催化剂Cr-Mo/SiO2.通过红外光谱、X射线衍射、比表面和孔隙分析等方法对Cr-Mo/SiO2进行表征,考察Cr-Mo/SiO2用量、H2O2用量、反应温度和反应时间对模型油和直馏柴油氧化脱硫效果的影响.结果表明,各反应条件对模型油氧化脱硫效果均有一定影响,二苯并噻吩较苯并噻吩更易脱除.直馏柴油氧化脱硫正交试验结果显示,各因素对脱硫率的影响大小排序为:反应温度>H2O2用量>Cr-Mo/SiO2用量>反应时间.最佳反应条件下,可使直馏柴油硫含量由994μg/g降至128μg/g,脱硫率达87.11%,油品回收率不低于98%.  相似文献   

8.
采用溶胶—凝胶法制备改性催化剂Cr-Mo/SiO2.通过红外光谱、X射线衍射、比表面和孔隙分析等方法对Cr-Mo/SiO2进行表征,考察Cr-Mo/SiO2用量、H2O2用量、反应温度和反应时间对模型油和直馏柴油氧化脱硫效果的影响.结果表明,各反应条件对模型油氧化脱硫效果均有一定影响,二苯并噻吩较苯并噻吩更易脱除.直馏...  相似文献   

9.
以四甲基乙二胺和三乙烯二胺为原料合成4种双季铵盐,经元素分析和核磁共振氢谱(1H NMR)表征确认其结构。催化活性检测发现,当反应温度为80℃、氧气压力为0.3 MPa及反应时间为7 h时,4种季铵盐协同N-羟基邻苯二甲酰亚胺(NHPI)催化氧化乙苯的转化率达到84.5%,苯乙酮的选择性达到88.1%。  相似文献   

10.
以模拟焦化纯苯为研究对象,以四丁基溴化铵(TBAB)为相转移催化剂,采用相转移技术,探讨相转移催化(PTC)氧化法脱除焦化纯苯中噻吩的工艺条件.结果表明,加入TBAB改善了两相间的传质,有效增强了氧化脱硫过程的速率.于反应温度70 ℃、反应时间45 min、水相中TBAB含量为0.2%、H2O2含量为16%、甲酸含量为8%、搅拌速率为400 r/min、剂苯比为3:10等操作条件下反应时,噻吩脱除率可达到89%以上.  相似文献   

11.
针对高铁氧化锰矿浸出过程中铁含量较高的问题,采用葡萄糖—铁粉在硫酸溶液中耦合还原浸出高铁氧化锰矿获得浸出液,再用黄铵铁矾法脱除浸出液中的铁离子,实现锰铁的有效分离。采用正交和单因素实验考察初始p H、反应温度、反应时间和硫酸铵加入量对浸出液中铁脱除率的影响。结果表明,初始p H值对浸出液中铁的脱除率影响最大,提高初始p H值和温度可以较大幅度提高铁离子脱除率,且沉矾过程能有效脱除浸出液中大量的有机物及Ca2+、Mg2+和K+等离子。黄铵铁矾法脱除浸出液中的铁离子的最佳工艺条件为:初始p H=3,反应温度95℃,反应时间1 h,铁离子脱除率达96.32%。  相似文献   

12.
为了解决硫化物排放所带来的环境问题,本文通过浸渍法将活性组分磷钨酸负载到用二氧化锡改性的二氧化锆载体上,以HPW/SnO_2-ZrO_2为催化剂、双氧水为氧化剂对模拟柴油进行催化氧化脱硫研究,考察制备条件和反应条件对脱硫率的影响,得到以下优化的催化氧化条件:HPW负载量(质量分数)为20%,反应温度40℃,反应时间2. 5 h,O/S=8,催化剂用量0. 1 g;在最优条件下二苯并噻吩(DBT)的脱除率达到99. 8%;采用BET、XRD、FTIR、TG和NH3-TPD等分析手段对催化剂的结构性能进行了表征。  相似文献   

13.
合成草酰胺单核Co(Ⅱ)配合物,通过红外光谱、核磁共振氢谱、元素分析等手段对其表征。研究以分子氧为氧源时,其与有机小分子催化剂2,2,6,6-四甲基哌啶-N-氧自由基(TEMPO)协同催化氧化苯甲醇的性能,考察溶剂、温度、时间、氧气压力等因素对反应的影响。结果表明:反应温度为100℃,氧气压力为0.5 MPa,反应12 h时,苯甲醇的转化率达到92.2%,苯甲醛选择性为95.4%。该催化体系实现在温和的条件下,催化氧化多种醇的需氧氧化反应,表现出优异的催化性能。  相似文献   

14.
微波辐射磷钼酸铈盐催化柴油氧化脱硫研究   总被引:1,自引:0,他引:1  
研究微波辐射下磷钼酸铈盐催化模型油和直馏柴油的氧化脱硫反应,考察不同萃取条件对柴油的脱硫率和收率的影响.结果表明,相同反应条件下,相对于普通加热,微波辐射加热时二苯并噻吩(DBT)、苯并噻吩(BT)的脱除率分别提高了4.2倍和3.8倍;在70 ℃和400 W微波功率下加热2 h,DBT、BT的脱除率分别为95.6%和74.8%;对m(催化剂)/m(柴油)为7.1 mg/g、H2O2初始浓度为0.44 mol/L的柴油,经70 ℃和400 W微波功率加热2 h,再在V(萃取剂)/V(柴油)为1/4的条件下用DMF萃取1次,柴油脱硫率为69.6 %,收率为97.5 %;萃取次数增加,柴油脱硫率提高,但收率明显下降.  相似文献   

15.
采用湿式氧化法脱除铝酸钠溶液中硫的研究   总被引:4,自引:0,他引:4  
鉴于铝酸钠溶液中S2-使得铁的含量增加而影响氧化铝的品位,研究采用往高压釜内通入氧气的湿式氧化法脱除拜耳液中的S2-的工艺。首先探索各种因素对S2-去除率的影响,然后对湿式氧化法转化硫化物的规律和机理进行探讨。研究结果表明:湿式氧气氧化法S2-的去除率受釜内起始平衡氧气压力、反应温度、反应时间的影响;较适宜的操作条件是:反应温度为200℃,氧气压力为3.0 MPa,S2-的浓度为31.2 mmol/L,此时S2-的去除率为99%;在高温高压下,铝酸钠溶液中的S2-大部分被氧化为SO42-,进行的是深度氧化,只有少部分S2-被氧化为硫代硫酸根、亚硫酸根及硫的其他形态;影响S2-氧化为SO42-的因素主要是反应温度和氧气压力,当温度高达260℃、氧气起始平衡压力达到1.0 MPa时,就有98%以上的S2-被氧化为SO42-。  相似文献   

16.
采用钨酸盐/H2O2/N-甲基吡咯烷酮硫酸氢盐([HNMP][HSO4])体系对模拟燃油和实际燃油进行深度催化氧化脱硫研究。采用X线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)以及热分析仪(TG)对合成的2种Keggin型钨酸盐(烷基硅钨酸铵(Q4Si W)和烷基磷钨酸铵(Q3PW))进行表征。考察不同脱硫体系、不同催化剂、催化剂用量、H2O2用量、反应温度和不同硫化物等对模拟油脱硫效果的影响。结果表明:在反应温度60℃,反应时间4 h,模拟油3 g,[HNMP][HSO4]1 g,n(O)∶n(S)∶n(催化剂)=300∶50∶1,Q4Si W为催化剂条件下,此催化氧化体系对噻吩(TS)、苯并噻吩(BT)和二苯并噻吩(DBT)的脱硫率分别为54.2%、87.4%以及99.1%,且重复使用5次,催化氧化性能并未明显降低。  相似文献   

17.
以偏苯三酸酐为原料,合成具有季铵盐和邻苯二甲酰亚胺(NHPI)双重结构的新型催化剂,经元素分析、红外光谱(IR)和核磁共振氢谱(1H-NMR)等结构表征,探讨反应条件对乙苯氧化的影响,当反应温度T=80℃,时间t=20 h,氧气压力=0.3 MPa时,乙苯转化率达到85.7%,苯乙酮选择性达到90.2%。  相似文献   

18.
测定30和50℃下噻吩、苯并噻吩单组分及双组分在Cu(I)13X上的吸附等温线.采用Langmuir模型对单组分平衡数据进行关联;采用修正的Langmuir模型对噻吩苯并噻吩二组分吸附平衡进行关联.结果表明:苯并噻吩在与噻吩的竞争吸附中占据优势,30℃时噻吩和苯并噻吩吸附平衡量的计算值与实验值的误差分别为 3.6%和2.4%;而50℃时噻吩和苯并噻吩吸附平衡量的计算值与实验值误差分别为3.5%和2.2%;Langmuir模型在不同温度下对二元组分具有一定适用性.  相似文献   

19.
α-蒎烯作为重要化工原料被广泛应用于医药和香料行业,为了解α-蒎烯在较低温度下氧气氧化过程性质,采用小型密闭压力容器试验(MCPVT)装置跟踪测定α-蒎烯与氧气氧化的过程压力和温度变化,利用碘量法测定过氧化物浓度,用气相色谱—质谱联用仪(GC-MS)分析了α-蒎烯氧化产物。结果表明,α-蒎烯与氧气的自氧化温度为85℃,氧化过程可分为三个阶段:氧气缓慢吸收阶段、快速氧化反应阶段以及氧化稳定持续阶段。此外,根据升温氧化实验,当α-蒎烯质量为0.87 g,氧气压力为0.5 MPa,温度达116℃时,该反应发生了温度和压力突变现象,具有潜在的失控危险性。α-蒎烯氧化主要发生在双键和烯丙位碳氢键上,二级碳氢烯丙基产物选择性明显高于一级碳氢烯丙基产物。  相似文献   

20.
研究了在乙醛氧化法制备醋酸过程中,乙醛浓度、反应温度、反应压力、反应时间对转化率的影响,发现在反应温度为95℃,反应压强为0.4 MPa,乙醛浓度为15%,反应时间为2.5 h时,转化率最高.通过一系列实验,成功设计出一套安全合理的实验方案,对实验操作过程进行了优化,并对化工工艺实验教学提出了一些建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号