首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
室温射频磁控溅射沉积ITO薄膜的研究   总被引:4,自引:1,他引:4  
报道透明导电膜不加衬底温度、无需沉积后的退火工艺、用射频磁控溅射沉积氧化铟、锡(ITO)薄膜获得电阻率3×10-4Ω·cm,在可见光区平均透光率84%的优良性能.用扫描电子显微镜和X射线衍射法研究了ITO薄膜的结晶形貌和晶体结构  相似文献   

2.
用小角X射线衍射方法对Si/Co多层膜进行了测试研究,应用衍射理论对测试中出现的周期数不多的强峰和其间的一系列次强峰进行了分析,在计算多层和单层膜厚度时,提出利用相邻两个衍射峰的角度之差来消除系统误差和定位误差的简便方法,使数据处理得到简化.最后,通过XPS分析指出,在膜层界面具有硅的化合物存在.  相似文献   

3.
利用射频磁控溅射复合靶技术,通过调节复合靶的百分比制得富硅的氧化硅薄膜,并在不同的温度下退火,制得含纳米硅的氧化硅薄膜.通过Raman谱的测量,计算出800℃退火的薄膜中纳米硅晶粒的平均尺寸为5.6 nm,用X射线衍射测量同样的样品得出其粒径为6.0 nm.在室温下测量光致发光(PL)谱,探测样品的峰位为360 nm,并结合光致发光激发谱(PLE),研究相应的激发与发光中心.  相似文献   

4.
磁控溅射沉积TiN薄膜工艺优化   总被引:2,自引:0,他引:2  
磁控溅射TiN薄膜的力学和腐蚀性能与薄膜的结构密切相关,而其结构又取决于薄膜的制备工艺.采用正交实验方法对影响TiN薄膜结构和性能的重要参数如电流、负偏压、氮流量和基体温度等进行优化,以期获得更优的制备工艺条件.实验结果显示,其对TiN薄膜纳米硬度影响由大到小的次序为:基体温度>负偏压>电流>氮流量;对膜/基结合力的影响由大到小的顺序为:基体温度>氮流量>电流>负偏压.综合考虑TiN薄膜的纳米硬度和膜/基结合力,获得的最优方案为:基体温度300℃,电流0.2A,负偏压-85 V,标准状态下氮流量4 mL/min.  相似文献   

5.
采用等离子体增强化学气相淀积(PECVD)技术,在超高真空系统中,使用大量氢稀释的硅烷作为反应气体,利用R.F.+D.C.双重功率源激励,通过低温下硅在氢等离子体放电中的化学输运直接淀积纳米硅薄膜,根据对薄膜样品结构的测定及其制备工艺条件,分析讨论了各工艺参数对淀积后薄膜的影响,从而使纳米硅薄膜的制备工艺趋于完善。  相似文献   

6.
采用反应磁控溅射方法,在不同沉积温度条件下制备了一系列多晶TiN/SiNx纳米多层膜,并用X射线衍射仪(XRD)、X射线反射仪(XRR)及纳米压痕仪(Nanoindenter)表征了材料的微观结构及力学性能。结果表明,沉积温度对多层膜的界面结构、择优取向及力学性能有显著影响:当沉积温度为室温时,多层膜的界面较高温条件下粗糙;而多层膜的择优取向在沉积温度为400℃时呈现强烈的TiN(200)织构;多层膜的硬度及弹性模量在室温至400℃温度范围内变化不大。  相似文献   

7.
射频磁控溅射沉积SiO2膜的研究   总被引:2,自引:0,他引:2  
研究以射频磁控溅射法在Si衬底上沉积SiO2膜.这一方法避免了高温氧化法对器件性能的损害.在结构和物理性能上对SiO2进行了多方面的测试和分析.结果表明,SiO2膜具有:1)微晶结构,结构致密、表面均匀、无针孔等.2)优良的物理性能,腐蚀速率(在P腐蚀液中)0.20~0.24nm/s,击穿场强2.6×107~4.4×107V/cm.可以得出结论:射频磁控溅射法沉积的SiO2膜与热氧化法沉积的SiO2膜具有相同的物理性质.  相似文献   

8.
采用射频磁控溅射并结合超高真空热处理工艺在不锈钢基底上制备出了纳米晶Li4Ti5O12薄膜.利用X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)考察退火温度对薄膜结构、形貌的影响.并通过恒流充放电技术初步考察薄膜的电化学性能.研究结果表明,在550℃-750℃退火温度下制备了具有明显择优取向的纳米晶Li4Ti5O12薄膜.其中650℃退火Li4Ti5O12薄膜结晶最完善,具备一定的充放电性能,有明显的充放电平台,比容量达到60μAh cm-2μm-1,可进一步研究作为薄膜锂电池阳极材料.  相似文献   

9.
采用磁控溅射法,在玻璃衬底上沉积了ZnS多晶薄膜,研究了衬底温度和Ar气流量对ZnS薄膜质量的影响.利用表面轮廓仪测量了薄膜的厚度,计算了薄膜的沉积速率.使用X射线衍射(XRD)分析了薄膜的微结构.通过紫外-可见光分光光度计测量了薄膜的透过谱,计算了禁带宽度.结果表明:所有制备的ZnS薄膜均为闪锌矿结构,所有样品在(111)方向具有明显的择优取向,沉积速率随着村底温度升高而降低,薄膜有较大的内应力,导致禁带宽度变窄.衬底温度为300℃时,薄膜的结晶质量最好.随着Ar气流量的增加,沉积速率增大,但薄膜的结构和光学性能都没有明显的变化.  相似文献   

10.
氢化钠米硅薄膜的光声光谱研究   总被引:2,自引:0,他引:2  
分析了纳米硅薄膜材料从可见光到近红外范围的光声光谱,并与微晶硅和非晶硅材料进行了对比。纳米硅的光吸收系数比后两都高(特别是在1.4~1.9eV之间,高出近一个数量级),其原因是纳米硅薄膜中大量晶粒对光子的散射、晶粒界面缺陷的吸收及载流子吸收的影响,此外,纳米硅光声谱中Urbach边宽且缓,反映出这种材料很高的无序程度。  相似文献   

11.
用射频磁控溅射法分别在具有20nmFe衬底的Si(100)和NaCl单晶基片上成功地制备出具有高饱和磁化强度的Fe-N薄膜.用X射线衍射仪、透射电子显微镜和振动样品磁强计研究了氮气分压和基片温度对Fe-N薄膜相结构和磁性的影响.结果表明,当氮气分压为2.66×10-2Pa,基片温度为100~150℃时,最有利于α-″Fe16N2相的形成.在此条件下制备的Fe-N薄膜的饱和磁化强度高达2.735T,超过纯Fe的饱和磁化强度值.  相似文献   

12.
DC磁控溅射沉积FexN薄膜成分及生长机制   总被引:3,自引:3,他引:0  
使用直流磁控溅射方法,Ar/N2作为放电气体,在玻璃衬底上沉积FexN薄膜.利用X射线光电子能谱(XPS)、掠入射小角X射线散射(GISAXS)、X射线衍射(XRD)、掠入射非对称X射线衍射(GIAXD)和原子力显微镜(AFM)研究薄膜的成分和生长机制.实验结果表明,在5%N2流量下获得FeN0.056单相化合物,薄膜中氮原子含量为14%,该值与α"-Fe16N2相中的氮原子的化学计量(11%)接近;GISAXS和AFM对薄膜表面分析表明,随溅射时间增加,薄膜变得愈加不光滑,用动力学标度的方法定量分析结果为:薄膜表面呈现自仿射性质,静态标度指数α≈0.65,生长指数β≈0.53±0.02,动力学标度指数z≈1.2,薄膜生长符合Kolmogorov提出的能量波动概念的KPZ模型指数规律.  相似文献   

13.
建立了一个磁控溅射模型,在几种特殊情况下,给出了计算机模拟的薄膜厚度三维分布和二维分布,提出了制备大面积薄膜的条件.结果表明:计算机模拟的结果与实验结果和有关文献的结果一致.  相似文献   

14.
15.
研究溅射制备的NiTi薄膜的马氏体相变行为.电阻随温度的变化曲线以及变温X射线衍射实验表明,当温度由400℃连续下降到-180℃时,NiTi薄膜发生了B2→R→B19'以及B2→B19'相变.  相似文献   

16.
磁控反应溅射法低温制备氮化硅薄膜   总被引:6,自引:0,他引:6  
采用射频 (RF)磁控反应溅射法制备出氮化硅薄膜 .从红外吸收光谱可见 ,氮气参加了反应并生成 Si- N键 ,薄膜中含有少量的 Si- O键和 Si- H键 ;薄膜的成分与制备过程中基片温度、射频功率等工艺参数密切相关 ,当基片温度升高到 40 0℃时 ,薄膜中基本不再含 Si- H键 ,氮化硅薄膜的纯度得到提高 .  相似文献   

17.
采用直流磁控溅射方法在石英基片上沉积铬薄膜.研究溅射功率、工作气压对铬薄膜结构、电学和光学性质的影响.利用X射线衍射仪、分光光度计和Van der Pauw方法分别检测薄膜的结构、光学和电学特性,利用德鲁特模型和薄膜的透射、反射光谱计算薄膜的厚度和光学常数.结果表明:制备的铬薄膜为体心立方的多晶态;在工作气压0.6Pa一定时,随着溅射功率从40W增加到120W,沉积速率呈非线性增加,薄膜更加致密,电阻率连续降低,在550nm波长处,薄膜的折射率从3.52增大到功率80W时的最大值(3.88),尔后逐渐减小至3.69;消光系数从1.50逐渐增大到2.20;在溅射功率80W一定时,随着工作气压从0.4Pa增加到1.2Pa,沉积速率呈近线性降低,薄膜的电阻率逐渐变大,在550nm波长处,折射率从3.88减小到3.62,消光系数从2.55减小到1.48.  相似文献   

18.
在SUS304不锈钢衬底上以粉末靶材为溅射靶源,利用射频磁控溅射技术制备出非晶态结构的V2O5、LiPON和LiMnO4薄膜,并借助扫描电子显微镜(SEM)测试手段对薄膜的形态进行表征.用此3种沉积的材料依次作为薄膜电池的负极、固体电解质和正极,金属钒则作为集电极,成功制备出全固态薄膜锂离子二次电池.实验结果表明,截止电位控制在0.3~4.0V之间测试时,该薄膜电池具有良好的充放电特性;经过500次循环后,其电化学性能趋于稳定,放电容量保持在2.67 μAh/cm2左右;采用恒定电流为20 μA进行循环性能测试时,首次放电容量达到4.41 μAh /cm2,循环寿命则可达到1 500次以上.  相似文献   

19.
采用直流反应磁控溅射的方法,在石英衬底上制备Cu2O纳米薄膜,研究了工艺因素中的溅射气压、氧分压、气体流量、溅射功率对薄膜结构、形貌的影响,从而确定了最佳溅射条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号