首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一条长3446bp 的人类新基因cDNA已从胎脑cDNA文库中被克隆,该cDNA克隆包长2583bp的开放读框,推测编码一条长860个氨基酸残基的蛋白质,预测分子质量为96.8ku,通过同源性比较及profile搜索,预测氨基酸序列显示出DExH-BOX RNA解旋酶基因家族特有的7保守基序及已知RNA解旋酶氨基酸序列的较高同源性,进一步通过蛋白质结构模型同已知RNA解旋酶结构的比较,可以认定其为一条人类RNA解旋酶基因家族新成员,通过基因编码的氨基酸序列中基序II D-E-V-H残基将其命名为DVH(DEVHbox Helicase),生物信息学手段结合DVH基因表达谱分析结果可推定DVH可能在胎儿发育过程中起作用,由于解旋基因家族同人类遗传疾病关系密切,以上结果可指导DVH基因的进一步功能研究并提示该,基因作为疾病侯选基因的可能性。  相似文献   

2.
Serebrov V  Pyle AM 《Nature》2004,430(6998):476-480
The NS3 helicase is essential for cytoplasmic RNA replication by the hepatitis C virus, and it is a representative member of helicase superfamily 2 (SF2). NS3 is an important model system for understanding unwinding activities of DExH/D proteins, and it has been the subject of extensive structural and mutational analyses. Despite intense interest in NS3, the molecular and kinetic mechanisms for RNA unwinding by this helicase have remained obscure. We have developed a combinatorial, time-resolved approach for monitoring the microscopic behaviour of a helicase at each nucleotide of a duplex substrate. By applying this analysis to NS3, we have independently established the 'physical' and 'kinetic' step size for unwinding of RNA (18 base pairs, in each case), which we relate to the stoichiometry of the functional, translocating species. Having obtained microscopic unwinding rate constants at each position along the duplex, we demonstrate that NS3 unwinds RNA through a highly coordinated cycle of fast ripping and local pausing that occurs with regular spacing along the duplex substrate, much like the stepping behaviour of cytoskeletal motor proteins.  相似文献   

3.
Bianco PR  Kowalczykowski SC 《Nature》2000,405(6784):368-372
DNA helicases are ubiquitous enzymes that unwind double-stranded DNA. They are a diverse group of proteins that move in a linear fashion along a one-dimensional polymer lattice--DNA--by using a mechanism that couples nucleoside triphosphate hydrolysis to both translocation and double-stranded DNA unwinding to produce separate strands of DNA. The RecBC enzyme is a processive DNA helicase that functions in homologous recombination in Escherichia coli; it unwinds up to 6,250 base pairs per binding event and hydrolyses slightly more than one ATP molecule per base pair unwound. Here we show, by using a series of gapped oligonucleotide substrates, that this enzyme translocates along only one strand of duplex DNA in the 3'-->5' direction. The translocating enzyme will traverse, or 'step' across, single-stranded DNA gaps in defined steps that are 23 (+/-2) nucleotides in length. This step is much larger than the amount of double-stranded DNA that can be unwound using the free energy derived from hydrolysis of one molecule of ATP, implying that translocation and DNA unwinding are separate events. We propose that the RecBC enzyme both translocates and unwinds by a quantized, two-step, inchworm-like mechanism that may have parallels for translocation by other linear motor proteins.  相似文献   

4.
Taylor AF  Smith GR 《Nature》2003,423(6942):889-893
Helicases are molecular motors that move along and unwind double-stranded nucleic acids. RecBCD enzyme is a complex helicase and nuclease, essential for the major pathway of homologous recombination and DNA repair in Escherichia coli. It has sets of helicase motifs in both RecB and RecD, two of its three subunits. This rapid, highly processive enzyme unwinds DNA in an unusual manner: the 5'-ended strand forms a long single-stranded tail, whereas the 3'-ended strand forms an ever-growing single-stranded loop and short single-stranded tail. Here we show by electron microscopy of individual molecules that RecD is a fast helicase acting on the 5'-ended strand and RecB is a slow helicase acting on the 3'-ended strand on which the single-stranded loop accumulates. Mutational inactivation of the helicase domain in RecB or in RecD, or removal of the RecD subunit, altered the rates of unwinding or the types of structure produced, or both. This dual-helicase mechanism explains how the looped recombination intermediates are generated and may serve as a general model for highly processive travelling machines with two active motors, such as other helicases and kinesins.  相似文献   

5.
RNA helicase activity associated with the human p68 protein   总被引:59,自引:0,他引:59  
H Hirling  M Scheffner  T Restle  H Stahl 《Nature》1989,339(6225):562-564
It has been proposed that p68, a nuclear protein of relative molecular mass 68,000, functions in the regulation of cell growth and division. A complementary DNA analysis of the protein has revealed extensive amino-acid sequence homology to the products of a set of genes recently identified in organisms as diverse as Escherichia coli and man, which include the eukaryotic translation initiation factor elF-4A. The protein products of the new gene family have several motifs in common which are thought to be involved in nucleic acid unwinding. As yet, however, only elF-4A, through its effect on RNA, has been shown to possess unwinding activity. Here we report that purified p68 also exhibits RNA-dependent ATPase activity and functions as an RNA helicase in vitro. The protein was first identified by its specific immunological cross reaction with the simian virus 40 large T antigen, the transforming protein of a small DNA tumour virus. Surprisingly, T antigen also has an RNA-unwinding activity: the homology between the two polypeptides, although confined to only a small region resembling the epitope of the cross-reacting antibody (PAb204), should therefore be of functional significance. Furthermore, the RNA-unwinding activity may be involved in the growth-regulating functions of both proteins.  相似文献   

6.
Bae SH  Bae KH  Kim JA  Seo YS 《Nature》2001,412(6845):456-461
Extensive work on the maturation of lagging strands during the replication of simian virus 40 DNA suggests that the initiator RNA primers of Okazaki fragments are removed by the combined action of two nucleases, RNase HI and Fen1, before the Okazaki fragments join. Despite the well established in vitro roles of these two enzymes, genetic analyses in yeast revealed that null mutants of RNase HI and/or Fen1 are not lethal, suggesting that an additional enzymatic activity may be required for the removal of RNA. One such enzyme is the Saccharomyces cerevisiae Dna2 helicase/endonuclease, which is essential for cell viability and is well suited to removing RNA primers of Okazaki fragments. In addition, Dna2 interacts genetically and physically with several proteins involved in the elongation or maturation of Okazaki fragments. Here we show that the endonucleases Dna2 and Fen1 act sequentially to facilitate the complete removal of the primer RNA. The sequential action of these enzymes is governed by a single-stranded DNA-binding protein, replication protein-A (RPA). Our results demonstrate that the processing of Okazaki fragments in eukaryotes differs significantly from, and is more complicated than, that occurring in prokaryotes. We propose a novel biochemical mechanism for the maturation of eukaryotic Okazaki fragments.  相似文献   

7.
Dumont S  Cheng W  Serebrov V  Beran RK  Tinoco I  Pyle AM  Bustamante C 《Nature》2006,439(7072):105-108
Helicases are a ubiquitous class of enzymes involved in nearly all aspects of DNA and RNA metabolism. Despite recent progress in understanding their mechanism of action, limited resolution has left inaccessible the detailed mechanisms by which these enzymes couple the rearrangement of nucleic acid structures to the binding and hydrolysis of ATP. Observing individual mechanistic cycles of these motor proteins is central to understanding their cellular functions. Here we follow in real time, at a resolution of two base pairs and 20 ms, the RNA translocation and unwinding cycles of a hepatitis C virus helicase (NS3) monomer. NS3 is a representative superfamily-2 helicase essential for viral replication, and therefore a potentially important drug target. We show that the cyclic movement of NS3 is coordinated by ATP in discrete steps of 11 +/- 3 base pairs, and that actual unwinding occurs in rapid smaller substeps of 3.6 +/- 1.3 base pairs, also triggered by ATP binding, indicating that NS3 might move like an inchworm. This ATP-coupling mechanism is likely to be applicable to other non-hexameric helicases involved in many essential cellular functions. The assay developed here should be useful in investigating a broad range of nucleic acid translocation motors.  相似文献   

8.
B Schwer  C Guthrie 《Nature》1991,349(6309):494-499
The assembly of the spliceosome is an ATP-dependent process. The splicing factor PRP16 contains variations of several motifs that define the eIF-4A-like ATP-dependent RNA helicase family. The protein has now been purified and shown to exhibit RNA-dependent ATPase activity. PRP16 is required specifically for the second catalytic step of the splicing reaction in vitro. This function requires ATP binding and/or hydrolysis, which appears to be concomitant with release of the protein from the spliceosome. PRP16 may be the prototype for a set of splicing factors which use ATP to drive a cycle of conformational changes.  相似文献   

9.
Mitochondrial splicing requires a protein from a novel helicase family   总被引:38,自引:0,他引:38  
B Séraphin  M Simon  A Boulet  G Faye 《Nature》1989,337(6202):84-87
  相似文献   

10.
Sun B  Johnson DS  Patel G  Smith BY  Pandey M  Patel SS  Wang MD 《Nature》2011,478(7367):132-135
Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair and recombination. Bacteriophage T7 gene product 4 is a model hexameric helicase that has been observed to use dTTP, but not ATP, to unwind double-stranded (ds)DNA as it translocates from 5' to 3' along single-stranded (ss)DNA. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate. Here we address this question using a single-molecule approach to monitor helicase unwinding. We found that T7 helicase does in fact unwind dsDNA in the presence of ATP and that the unwinding rate is even faster than that with dTTP. However, unwinding traces showed a remarkable sawtooth pattern where processive unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behaviour was not observed with dTTP alone and was greatly reduced when ATP solution was supplemented with a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. We found that T7 helicase binds and hydrolyses ATP and dTTP by competitive kinetics such that the unwinding rate is dictated simply by their respective maximum rates V(max), Michaelis constants K(M) and concentrations. In contrast, processivity does not follow a simple competitive behaviour and shows a cooperative dependence on nucleotide concentrations. This does not agree with an uncoordinated mechanism where each subunit functions independently, but supports a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Our data indicate that only one subunit at a time can accept a nucleotide while other subunits are nucleotide-ligated and thus they interact with the DNA to ensure processivity. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.  相似文献   

11.
D J Jamieson  B Rahe  J Pringle  J D Beggs 《Nature》1991,349(6311):715-717
Five small nuclear RNAs (snRNAs) are required for nuclear pre-messenger RNA splicing: U1, U2, U4, U5 and U6. The yeast U1 and U2 snRNAs base-pair to the 5' splice site and branch-point sequences of introns respectively. The role of the U5 and U4/U6 small nuclear ribonucleoprotein particles (snRNPs) in splicing is not clear, though a catalytic role for the U6 snRNA has been proposed. Less is known about yeast splicing factors, but the availability of genetic techniques in Saccharomyces cerevisiae has led to the identification of mutants deficient in nuclear pre-mRNA splicing (prp2-prp27). Several PRP genes have now been cloned and their protein products characterized. The PRP8 protein is a component of the U5 snRNP and associates with the U4/U6 snRNAs/snRNP to form a multi-snRNP particle believed to be important for spliceosome assembly. We have isolated extragenic suppressors of the prp8-1 mutation of S. cerevisiae and present here the preliminary characterization of one of these suppressors, spp81. The predicted amino-acid sequence of the SPP81 protein shows extensive similarity to a recently identified family of proteins thought to possess ATP-dependent RNA helicase activity. The possible role of this putative helicase in nuclear pre-mRNA splicing is discussed.  相似文献   

12.
13.
The innate immune system senses viral infection by recognizing a variety of viral components (including double-stranded (ds)RNA) and triggers antiviral responses. The cytoplasmic helicase proteins RIG-I (retinoic-acid-inducible protein I, also known as Ddx58) and MDA5 (melanoma-differentiation-associated gene 5, also known as Ifih1 or Helicard) have been implicated in viral dsRNA recognition. In vitro studies suggest that both RIG-I and MDA5 detect RNA viruses and polyinosine-polycytidylic acid (poly(I:C)), a synthetic dsRNA analogue. Although a critical role for RIG-I in the recognition of several RNA viruses has been clarified, the functional role of MDA5 and the relationship between these dsRNA detectors in vivo are yet to be determined. Here we use mice deficient in MDA5 (MDA5-/-) to show that MDA5 and RIG-I recognize different types of dsRNAs: MDA5 recognizes poly(I:C), and RIG-I detects in vitro transcribed dsRNAs. RNA viruses are also differentially recognized by RIG-I and MDA5. We find that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection. Furthermore, RIG-I-/- and MDA5-/- mice are highly susceptible to infection with these respective RNA viruses compared to control mice. Together, our data show that RIG-I and MDA5 distinguish different RNA viruses and are critical for host antiviral responses.  相似文献   

14.
15.
A chromatin remodelling complex involved in transcription and DNA processing   总被引:44,自引:0,他引:44  
Shen X  Mizuguchi G  Hamiche A  Wu C 《Nature》2000,406(6795):541-544
  相似文献   

16.
17.
Dopamine receptors are classified into D1 and D2 subtypes on the basis of their pharmacological properties and the intracellular responses they mediate. The cerebral D2 dopamine receptor is the target of drugs used to alleviate the main symptoms of schizophrenia. Although it is considered to be a single molecular entity, there is evidence that multiple D2-receptor subtypes exist. A complementary DNA encoding a D2 receptor has recently been cloned and the deduced 415-amino-acid sequence indicates that it belongs to the large superfamily of receptors coupled to G proteins, and that its topology consists of seven transmembrane domains. In this family, the genes are frequently without introns and each is believed to encode a unique polypeptide product. Here we show that the gene for the D2 receptor produces two receptor isoforms by alternative messenger RNA splicing, providing a route to receptor diversity in this family. One isoform corresponds to the D2(415) receptor, but the second contains an additional sequence encoding a 29-amino-acid fragment, defining a novel D2(444) receptor isoform. Expression of the two isoforms is tissue-specific, and both are regulated by guanyl nucleotides. As the extra sequence is located within a putative cytoplasmic loop that binds to G proteins, the two isoforms might interact with different G proteins and thereby initiate distinct intracellular signals.  相似文献   

18.
Liu J  Renault L  Veaute X  Fabre F  Stahlberg H  Heyer WD 《Nature》2011,479(7372):245-248
Homologous recombination is a high-fidelity DNA repair pathway. Besides a critical role in accurate chromosome segregation during meiosis, recombination functions in DNA repair and in the recovery of stalled or broken replication forks to ensure genomic stability. In contrast, inappropriate recombination contributes to genomic instability, leading to loss of heterozygosity, chromosome rearrangements and cell death. The RecA/UvsX/RadA/Rad51 family of proteins catalyses the signature reactions of recombination, homology search and DNA strand invasion. Eukaryotes also possess Rad51 paralogues, whose exact role in recombination remains to be defined. Here we show that the Saccharomyces cerevisiae Rad51 paralogues, the Rad55-Rad57 heterodimer, counteract the antirecombination activity of the Srs2 helicase. The Rad55-Rad57 heterodimer associates with the Rad51-single-stranded DNA filament, rendering it more stable than a nucleoprotein filament containing Rad51 alone. The Rad51-Rad55-Rad57 co-filament resists disruption by the Srs2 antirecombinase by blocking Srs2 translocation, involving a direct protein interaction between Rad55-Rad57 and Srs2. Our results demonstrate an unexpected role of the Rad51 paralogues in stabilizing the Rad51 filament against a biologically important antagonist, the Srs2 antirecombination helicase. The biological significance of this mechanism is indicated by a complete suppression of the ionizing radiation sensitivity of rad55 or rad57 mutants by concomitant deletion of SRS2, as expected for biological antagonists. We propose that the Rad51 presynaptic filament is a meta-stable reversible intermediate, whose assembly and disassembly is governed by the balance between Rad55-Rad57 and Srs2, providing a key regulatory mechanism controlling the initiation of homologous recombination. These data provide a paradigm for the potential function of the human RAD51 paralogues, which are known to be involved in cancer predisposition and human disease.  相似文献   

19.
20.
Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells   总被引:134,自引:0,他引:134  
Tetsu O  McCormick F 《Nature》1999,398(6726):422-426
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号