首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文得到了Hardy算子Tf(x)=integral from n=0 to z(f(t)dt)从空间L~p(R+,vdx)到L~q(R+,Udx)有界的权函数对(u,v)的特征,其中1≤q相似文献   

2.
本文利用残数定理推出几个求级数和的公式并将[1]中公式作为推论3的特例.定理设 R(z)为有理函数,且满足条件:1)整数 z=n 不为极点;2)当 z→∞时,R(z)=O(|z|~(-2))时,则有sum from n=-∞ to +∞ R(n)e~(INnζ)=-sum from Res(R(z)(2πie~(izNζ))/(e~(2niz)-1);ζ)  相似文献   

3.
我们知道,Г函数为Г(x)=integral from=0 to +∞ (t~(x-1)e~(-t)dt) (x>0) (1) 它有如下递推性质 Г(x+n+1)=(x+n)(x+n-1)…(x+1)x Г(x) (2) 特别 Г(n+1)=n1 (3) 根据上述性质,在求和中如果出现等差因子的连乘积,我们可考虑利用  相似文献   

4.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

5.
本文应用残数理论建立了n阶常系数线性微分方程及欧拉方程通解的另一种表示形式。n阶非齐次常系数线性微分方程通解的表达式为函数f(z′)·e~x/g(z)与e~(zx)·integral from x~0 to x e~(-zt)F(t)dt/g(z)在极点z_j(j=1,2,…l)的残数之和。其中g(z)是z的n次多项式,在z_j(j=1,2,…l)的值为零,f(z)是任一个解析函数,在z_j(j=1,2,…l)的值不为零。欧拉方程通解有类似结果。  相似文献   

6.
本文利用Rusheweyh导数引进函数类T(α+p—1,β)={f(z)|f(z)∈A(p),Re(D~(α+p)f)/(D~(α+p-1)f>β}。当0≤β≤1/2时,证明了T(α+p,β)(?)T(α+p-1,β)。还讨论了由积分算子定义的函数F(z)=(p+c)·z~(-(?))integral from n=0 to z t~((?)-1)f(t)dt,(|z|<1)的映射性质。推广了某些文献中的一些结果。  相似文献   

7.
设(X_n,n≥1)为独立同分布随机变量序列,S_n=sum from i=1 to n(X_i),本文给出了以g(n)为边界的随机游动S_n的期望是否有限的判据,即若D|X_1|~5<∞,则期望为有限的充分必要条件为integral from n=1 to ∞ (t~(1/2)g~(-1)(t)e~(-g~2(t)/2v~2t)dt<∞。)  相似文献   

8.
证明了如下定理: 设f(z)=sum from n=1 to ∞(1/n)a_nP_m(z)为一整函数,P_n(z)为Legendre多项式,λ为一正数,如果(n+1~λ/n)a_n/a_(n+1)|为n的终归单增函数,则有 (α,f)<{1+0(1)}λ~(-λ-1)Γ(1+λ)e~λv(α,f)μ(α,f);■  相似文献   

9.
该文研究了具有一般权函数w(x)的积分integral from 0 to b w(x)f(x)dx,得出了普遍意义下的Gauss-Kronrod规则,给出并证明了相应代数精确度的两个结果。这些结果主要依赖于下列命题: (1)对一般权函数w(x),q,(z)=integral from 0 to b w(t)p_n(t)/(z-t)dt满足三项递推关系; (2)设E_n(z)为〔q,(z)〕~(-1)的主部,则q_n(z)E_n(z)∈span{1,q_(n+1)(Z),…,q_(2n+1)(Z)}; (3)integral from 0 to b w(z)p_n(z)z~k dz=0,0≤k≤n; (4)对特殊函数w(x)=1,E_n(z)之零点是〔a,b〕的单零点,且被p_n(x)的零点隔开。  相似文献   

10.
本文给出了勒襄特(Legendre)级数sum from n=0 to ∞a_nP_n(z)在收敛椭园E_p上一点z_0=cosh(μ iβ_0)收敛的充分必要条件为级数sum from n=0 to ∞δ_ne~(nβ0~i)收敛,其中δ_n=n~(-(1/2))e~(nμ)a_n。本文证明了勒襄特级数的亚倍尔(Abel)型定理:若级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0),且sum from n=0 to ∞a_nP_n(z_0)收斂,则sum from n=0 to ∞a_nP_n(z)=sum from n=0 to ∞a_nP_n(z_0),这里z→z_0是在E_μ内沿与E_μ正交的双曲线H_(β_0)进行。本文还证明了勒襄特级数的刀培(Tauber)型定理:设级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0)为E_μ上一定点,令δ_n=n~(-(1/2))e~(nμ)a_n,如果δ_n=o(1/n),且sum from n=0 to ∞a_nP_n(z)=S,这里z→z_0是在E_μ内沿H_(β_0)进行,sum from n=0 to ∞a_nP_n(z_0)收敛,其和为S。  相似文献   

11.
本文引进新的函数类G(p,α,β),给出积分表达式、偏差定理、系数估计和充分必要条件等。最后,还给出包含关系G(p,α+1,β)(?)G(p,α,β)和一类积分算子F(z)=(p+c)z~(-c) integral from n=0 to z t~(c-1)f(t)dt的不变性质。当参数改变时,可以得到前人的一些结果。  相似文献   

12.
定理1.设定义在[1,∞)上的正值函数μ(x)满足下面的条件:(ⅰ)存在N_0>0,使得当x≥N_0时,函数x~2μ(x)是增加的;(ⅱ)存在常数c>1,使得对于一切x,有Aμ(x)≤μ(cx)≤Bμ(x),A>0,B>0。设f(x)∈L~p(0,2π),1p,则当积分integral from n=0 to 1 1/t~2μ(1/t)[integral from n=0 to 2x|f(x t)-f(x-t)|pdx]~(β/p)dt (1) 收敛时,下面的级数收敛: sum from n=1 to ∞μ(n)[sum from k=n to ∞ρ_k~p k~(p-2)]~(β/p),(ρ_k~2=a_k~2 b_k~2) (2) 定理2.设μ(t)是正值函数, Σμ(n)/n~β<∞(β>0),并且存在常数c>0,使得μ(cx)~μ(x),x→∞。令An=sum from k=n to ∞ρ_k~p k~(p-2)。若存在正数α<1,使得An·n~(p-α)当n≥N_0时是增加的,则由(2)的收敛性可以得出(1)的收敛性。  相似文献   

13.
本文考虑非线性中立型微分方程d/dt[x(t)-P(t)x(ι-τ)] Q(t),multiply from i=1 to (?)[x(t-σ_1)]~αsignx(t-σ_1)=0当P(t)=1时,我们获得了如上方程一切有界解振动的充分必要条件,而不要求公设integral from n=(?) to ∞(Q(s)ds=∞)  相似文献   

14.
1、R. W. Leggett[1]证明H—方程(1、1) H(x)=1+x H(x)integral from n=0 to 1(1/(x+t))ψ(t)H(t)dt,ψ≥0当integral from n=0 to 1ψ(t)dt<1/2时,存在两个解的充要条件为integral from n=0 to 1((ψ(t))/(1-s~2))dt>1/2,但其充分性的证明是错误的。本文是对于更一般形式的方程  相似文献   

15.
本文研究Fejr型核的奇异积分f_n(x)=n integral from n=-∞ to ∞ f(t)K(n(t-x))dt在空间Lp(-∞,∞)(P≥1)内近迫p冪可求和函数f(x)的階的估计问题.在这里,我们假定函数K(t)满足下列条件:1) K(t)>0,2)K(-t)=K(t),3)integral from n=-∞ to ∞ K(t)dt=1,  相似文献   

16.
研究了由幂级数所表示的整函数f(z)=sum from n=0 to ∞(a_nz~(n))的系数重排问题,得到了如下结果:任意整函数f(z)=sum from n=0 to ∞(a_nz~n)的系数经重排P(n′→n)后仍为整函数且其级不变的充要条件是n′=n+0(n)。  相似文献   

17.
本文推广了Roth的关于分布不均匀性的一个不等式到很一般的情况。设Ω为R~m中一区域,f∈C~m(Ω)。P_1…P_N为Ω内N个点。记S(x~1,…,x~m)为在(—∞,,x~1)×…×(—∞,x~m)内的点数。记Δ(t)={x∈Ω||(?)~mf(x/(?)x~1…(?)x~m|≥t)。ρ(x,(?)Δ(t))为x到Δ(t)的边界距离,则integral from n=Ω[S(x)-f(x)]~2dv≥c(m)(logN)~(m-1)N~(-2) integral from n=0 to ∞(t integral from n=Δ(t) (ρ(x,(?)Δ(t))~mdv)dt.  相似文献   

18.
設f(t)是以2π为週期的,依Lebesgue的意義是可積的週期函數,其富理埃級數的共軛級數为 sum from n=1 to ∞(b_n cos nt-a_n sin nt)。(1) 記φ(t)=f(x+t)-f(x-t),設積分 g(x)=1/2πintegral from n=0 to π(φ(t)cot(t/2)dt) 依Canchy的意義存在,陳建功教授證明:假使  相似文献   

19.
关于integral from n=0 to +∞(e~(-x~2)dx)的多种计算方法的概述  相似文献   

20.
复的幂级数sum from n=0 to ∞(C_n(z-a)~n)在收敛圆k:|z-a|<R(0<R≤+∞)内的和函数f(z)具n=0有一些很好的性质,如:①,f(z)在k内解析;②,f(z)在k内具有任意阶导数,且可逐项求导至任意阶,即:f_(Z)~(m)=sum from n=m to ∞(n(n-1))……(n-m+1)·C_n(z-a)~(n-m),(z∈k,m∈N)等。但其和函数在收敛圆周|z-a|=R(0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号