共查询到18条相似文献,搜索用时 78 毫秒
1.
基于核函数主元分析的软测量建模方法及应用 总被引:5,自引:0,他引:5
提出了基于核函数主元分析(PCA)方法提取变量的特征信息以有效处理非线性数据,并在此基础上进行软测量建模的方法。利用该方法建立了工业萘初馏塔酚油含萘量软测量模型,工业应用结果表明了该方法的有效性和优越性。 相似文献
2.
针对混合核函数支持向量机(SVM)在建模中的重要参数值选择问题,提出利用具有较强全局搜索能力的改进粒子群优化算法,对混合核函数SVM建模过程中的重要参数进行优化调整,给出应用该方法的具体步骤,通过仿真实验验证该算法的有效性.该方法用于谷氨酸发酵过程的建模研究,取得了较高建模精度. 相似文献
3.
核函数方法及其模型选择 总被引:10,自引:0,他引:10
核函数方法已成为近年来机器学习领域继人工神经网络方法之后又一个十分流行和有效的方法.阐述了核函数方法的基本原理、特点及实施步骤,介绍了几种主要的核函数方法,最后重点分析和讨论了核函数方法中参数选择和核函数构造等核函数方法研究中的热点问题,并对其未来研究作了展望. 相似文献
4.
将核主元分析(PCA)与支持向量机(SVM)相结合并将其应用到电子鼻模式识别单元中,实现了数据降维和改善分类器性能。实验结果表明与单纯的应用支持向量机方法进行分类相比,此方法具有更高的识别率。 相似文献
5.
基于核函数主元分析的机械设备状态识别 总被引:4,自引:0,他引:4
研究了核函数主元分析在机械故障模式分类中的应用,通过计算原始空间的内积核函数实现原始数据空间到高维数据空间的非线性映射,再对高维数据作主元分析,求取更易于分类的核函数主元,实验表明,核函数主元分析更适于提取故障信号的非线性特征,能有效区分不同的故障模式,可以应用于机械设备的状态识别。 相似文献
6.
基于核主元分析与支持向量机的监控诊断方法及其应用 总被引:3,自引:0,他引:3
为了及时反映密闭鼓风炉冶炼过程状态,实现对密闭鼓风炉炉况的监控与诊断,提出核主元分析和多支持向量机分类的相结合的过程监控与故障诊断方法.其原理是:首先,用核主元分析方法提取过程数据特征,建立核主元分析的监控模型;然后,将代表过程特征的核主元送入多支持向量机分类器中,利用"一对其余"算法对故障进行诊断与分类.实验结果表明,所提出的方法与传统的主元分析方法相比,整个样本集的可分性变大,分类正确率提高,能更准确地诊断炉子的各种故障,可有效地用于密闭鼓风炉冶炼过程的故障诊断. 相似文献
7.
《四川理工学院学报(自然科学版)》2016,(3)
SVM是人脸识别中最常使用的一种机器学习领域算法,它通过距离概念得到对数据分布的结构化描述,降低了对数据规模的要求,适合处理人脸图像这种小样本训练集的分类问题。其中SVM的核函数的选择对分类精度影响很大,全局核函数的预测函数对输出进行正确预测的能力较高,而局部核函数具有较强的学习能力,兼顾两者特点,使用结合RBF核和Sigmoid核的混合核来设计SVM分类器进行识别。针对ORL库进行PCA特征提取,然后使用基于混合核的SVM分类器进行识别分类。实验结果表明,在识别率上,基于该混合核函数的SVM分类器比基于普通核函数SVM分类器要更占优势。 相似文献
8.
基于盖根鲍尔正交多项式,提出了向量形式的盖根鲍尔多项式,并由此衍生出一类新的支持向量机核函数——盖根鲍尔核函数.文章对盖根鲍尔核函数性态以及鲁棒性与泛化性能等方面做了研究. 相似文献
9.
针对电主轴系统特点,提出基于改进核主元分析(KPCA)的故障检测方法,引入混合核函数的定义,将多项式核和径向基核的混合核方法与主元分析方法(PCA)相结合,解决采用单一核函数诊断故障时的高误诊率问题.首先对数据进行预处理,然后使用混合核函数对数据矩阵进行映射,映射到高维特征空间,使非线性数据变量变为线性数据变量,并使用PCA提取变量数据的高维空间相关特征确定主元个数,最后根据混合非线性主元特征计算出的T2和Q统计量,实现在线故障检测.该方法改进传统核函数的选取方法,充分考虑工业过程中的非线性,更精确地描述工业过程特性,可以准确、有效地检测出电主轴系统故障.对田纳西-伊斯曼(TE)过程以及电主轴系统的应用实例证明该方法的可行性. 相似文献
10.
为了有效改进支持向量机(SVM)在工业过程中的故障检测性能,提出一种基于核主成分空间支持向量机的过程监视方法。首先,运用核主成分分析方法(KPCA)处理数据,获取数据的核主成分,在核主成分空间计算Hotelling′s T2统计量;然后,在T2统计量基础上加入时滞特性和时差特性,并将三者组合成增广矩阵,运用正常数据和故障数据的增广矩阵训练SVM模型;最后,运用SVM模型对测试数据进行分类,实现对故障的有效检测。将本研究方法应用于非线性数值例子和田纳西-伊斯曼工业过程中,与PCA、KPCA、传统的SVM和KPCA-LSSVM方法作比较,进一步验证了该方法的有效性。 相似文献
11.
在核主成分分析中,给每个训练数据赋予一个置信权重,将训练数据视为样本空间的模糊点,研究了基于模糊点数据的核主成分分析.数值模拟表明,该方法能够有效控制异常点对主成分的影响.同时,该方法也为数据先验信息的利用提供了一个可行的途径. 相似文献
12.
为了克服基于主元分析的过程监控方法非线性处理能力弱的缺点和降低基于非线性主元分析的过程监控方法的计算复杂度,提出了将核函数PCA监控方法用于复杂工业过程实时监控系统的开发研究,并讨论了核函数参数选择对系统性能的影响。核函数PCA能有效地提取过程变量的非线性关系,而且计算复杂度低,便于在线实施。仿真结果表明该方法是一种有前途的复杂过程非线性实时监控技术。 相似文献
13.
简介了核主成分分析的原理及利用核主成分分析的图像去噪方法.通过使用核函数,在特征空间中对噪声图像使用主成分分析进行降噪处理.基于MDS的思想,使用核方法计算出在特征空间中降噪后的图像与其邻域点之间的内积约束关系,通过核函数重构出在原空间中降噪图像与其邻域点的内积约束关系,基于此内积约束关系在原空间中重构出降噪图像,从而达到通过核主成分分析对图像降噪的目的.比原有的MDS算法更稳定,对图像的噪声部分有更好的去除效果. 相似文献
14.
贾亚琼 《南京邮电大学学报(自然科学版)》2009,9(19)
本文简介了核主成分分析的原理及利用核主成分分析的图像去噪问题。通过使用核函数,在特征空间中对噪声图像使用主成分分析进行降噪处理,基于MDS的思想,使用核方法计算出在特征空间中降噪后的图像与其邻域点之间的内积约束关系,通过核函数重构出在原空间中降噪图像与其邻域点的内积约束关系,基于此内积约束关系在原空间中重构出降噪图像,从而达到通过核主成分分析对图像降噪的目的。对比原有的MDS方法,本文的算法更稳定,对图像的噪声部分有更好的去除效果。 相似文献
15.
基于SVM的沙尘暴预测模型 总被引:5,自引:0,他引:5
根据沙尘暴天气的特点和支持向量机(support vector machine,SVM)方法在解决小样本学习问题中的优势,提出基于SVM的沙尘暴预测模型.首先利用主成分分析法进行数据预处理,然后选择了径向基核函数,并通过分析惩罚参数和核参数对SVM分类器性能的影响,确定了参数的搜索空间,继而利用网格搜索法对其进行优化.在此基础上,构建并实现了基于SVM的沙尘暴预测模型.该模型与BP神经网络模型的运行结果对比表明,基于SVM的沙尘暴预报模型稳定性好,运行速度快,预报准确率提高了71.2%. 相似文献
16.
提出了一种基于核函数的多用户检测(MUD)方案,与常规的支持向量机(SVM)学习算法不同的是,判别输出函数中的支持向量采用一种稀疏核逼近方法获取,而其对应系数则由输入采样协方差矩阵的广义特征向量构成,整个算法避免了常规的二次规划(QP)求解过程.仿真结果表明,采用核函数算法的检测性能与SVM检测性能接近,但在较大规模样本集下可有效减小计算量. 相似文献
17.
为了解决复杂的井架钢结构损伤识别问题,创新的将时域多参数信息融合与机器学习结合起来,根据井架钢结构的加速度响应信号,提出了一种基于主成分分析和支持向量机的井架钢结构损伤识别方法。首先利用加速度传感器提取在冲击载荷下井架钢结构加速度响应信号,进而获得其多个时域特征:脉冲因子、裕度因子和峭度;然后依据主成分分析法将以上特征进行融合,在保证尽可能多的信息被保留的情况下形成一个新的综合性特征;此时将该特征数据输入支持向量机模型进行损伤识别。利用以上理论进行仿真模拟计算和识别,同时利用ZJ70型井架钢结构实验室模型进行试验分析。结果表明:利用该方法识别井架钢结构单一或多处损伤准确率较高,并且简单易行耗时较少。 相似文献
18.
谌昌强 《西南师范大学学报(自然科学版)》2013,38(8):136-140
提出一种基于主成分分析和球结构支持向量机的人耳识别方法.首先将人耳从侧面人脸中提取出来,然后采用主成分分析方法对人耳图像进行特征提取,最后采用球结构支持向量及对人耳图像进行训练和识别.与传统的多分类方法相比,该分类方法识别性能更高,这为非打扰式生物特征识别提供了一条有效途径. 相似文献