共查询到19条相似文献,搜索用时 93 毫秒
1.
基于核函数主元分析的软测量建模方法及应用 总被引:5,自引:0,他引:5
提出了基于核函数主元分析(PCA)方法提取变量的特征信息以有效处理非线性数据,并在此基础上进行软测量建模的方法。利用该方法建立了工业萘初馏塔酚油含萘量软测量模型,工业应用结果表明了该方法的有效性和优越性。 相似文献
2.
针对混合核函数支持向量机(SVM)在建模中的重要参数值选择问题,提出利用具有较强全局搜索能力的改进粒子群优化算法,对混合核函数SVM建模过程中的重要参数进行优化调整,给出应用该方法的具体步骤,通过仿真实验验证该算法的有效性.该方法用于谷氨酸发酵过程的建模研究,取得了较高建模精度. 相似文献
3.
核函数方法及其模型选择 总被引:10,自引:0,他引:10
核函数方法已成为近年来机器学习领域继人工神经网络方法之后又一个十分流行和有效的方法.阐述了核函数方法的基本原理、特点及实施步骤,介绍了几种主要的核函数方法,最后重点分析和讨论了核函数方法中参数选择和核函数构造等核函数方法研究中的热点问题,并对其未来研究作了展望. 相似文献
4.
汪爱娟;张端金;介晓婧 《中南大学学报(自然科学版)》2013,44(S1):185-188
研究一类非线性系统的故障检测问题。基于核主元分析(KPCA)方法,给出了一种非线性故障检测算法。该方法通过核函数实现非线性变换,将变量由非线性的输入空间转换到线性特征空间。在特征空间中,利用传统的主元分析(PCA)方法进行故障检测。仿真结果表明该方法是有效的。 相似文献
5.
将核主元分析(PCA)与支持向量机(SVM)相结合并将其应用到电子鼻模式识别单元中,实现了数据降维和改善分类器性能。实验结果表明与单纯的应用支持向量机方法进行分类相比,此方法具有更高的识别率。 相似文献
6.
基于核主元分析与支持向量机的监控诊断方法及其应用 总被引:3,自引:0,他引:3
为了及时反映密闭鼓风炉冶炼过程状态,实现对密闭鼓风炉炉况的监控与诊断,提出核主元分析和多支持向量机分类的相结合的过程监控与故障诊断方法。其原理是:首先,用核主元分析方法提取过程数据特征,建立核主元分析的监控模型;然后,将代表过程特征的核主元送入多支持向量机分类器中,利用\"一对其余\"算法对故障进行诊断与分类。实验结果表明,所提出的方法与传统的主元分析方法相比,整个样本集的可分性变大,分类正确率提高,能更准确地诊断炉子的各种故障,可有效地用于密闭鼓风炉冶炼过程的故障诊断。 相似文献
7.
《四川理工学院学报(自然科学版)》2016,(3)
SVM是人脸识别中最常使用的一种机器学习领域算法,它通过距离概念得到对数据分布的结构化描述,降低了对数据规模的要求,适合处理人脸图像这种小样本训练集的分类问题。其中SVM的核函数的选择对分类精度影响很大,全局核函数的预测函数对输出进行正确预测的能力较高,而局部核函数具有较强的学习能力,兼顾两者特点,使用结合RBF核和Sigmoid核的混合核来设计SVM分类器进行识别。针对ORL库进行PCA特征提取,然后使用基于混合核的SVM分类器进行识别分类。实验结果表明,在识别率上,基于该混合核函数的SVM分类器比基于普通核函数SVM分类器要更占优势。 相似文献
8.
基于盖根鲍尔正交多项式,提出了向量形式的盖根鲍尔多项式,并由此衍生出一类新的支持向量机核函数——盖根鲍尔核函数.文章对盖根鲍尔核函数性态以及鲁棒性与泛化性能等方面做了研究. 相似文献
9.
基于核函数主元分析的机械设备状态识别 总被引:4,自引:0,他引:4
研究了核函数主元分析在机械故障模式分类中的应用,通过计算原始空间的内积核函数实现原始数据空间到高维数据空间的非线性映射,再对高维数据作主元分析,求取更易于分类的核函数主元,实验表明,核函数主元分析更适于提取故障信号的非线性特征,能有效区分不同的故障模式,可以应用于机械设备的状态识别。 相似文献
10.
针对电主轴系统特点,提出基于改进核主元分析(KPCA)的故障检测方法,引入混合核函数的定义,将多项式核和径向基核的混合核方法与主元分析方法(PCA)相结合,解决采用单一核函数诊断故障时的高误诊率问题.首先对数据进行预处理,然后使用混合核函数对数据矩阵进行映射,映射到高维特征空间,使非线性数据变量变为线性数据变量,并使用PCA提取变量数据的高维空间相关特征确定主元个数,最后根据混合非线性主元特征计算出的T2和Q统计量,实现在线故障检测.该方法改进传统核函数的选取方法,充分考虑工业过程中的非线性,更精确地描述工业过程特性,可以准确、有效地检测出电主轴系统故障.对田纳西-伊斯曼(TE)过程以及电主轴系统的应用实例证明该方法的可行性. 相似文献
11.
为了克服基于主元分析的过程监控方法非线性处理能力弱的缺点和降低基于非线性主元分析的过程监控方法的计算复杂度,提出了将核函数PCA监控方法用于复杂工业过程实时监控系统的开发研究,并讨论了核函数参数选择对系统性能的影响。核函数PCA能有效地提取过程变量的非线性关系,而且计算复杂度低,便于在线实施。仿真结果表明该方法是一种有前途的复杂过程非线性实时监控技术。 相似文献
12.
基于SVM的沙尘暴预测模型 总被引:5,自引:0,他引:5
根据沙尘暴天气的特点和支持向量机(support vector machine,SVM)方法在解决小样本学习问题中的优势,提出基于SVM的沙尘暴预测模型.首先利用主成分分析法进行数据预处理,然后选择了径向基核函数,并通过分析惩罚参数和核参数对SVM分类器性能的影响,确定了参数的搜索空间,继而利用网格搜索法对其进行优化.在此基础上,构建并实现了基于SVM的沙尘暴预测模型.该模型与BP神经网络模型的运行结果对比表明,基于SVM的沙尘暴预报模型稳定性好,运行速度快,预报准确率提高了71.2%. 相似文献
13.
提出了一种基于核函数的多用户检测(MUD)方案,与常规的支持向量机(SVM)学习算法不同的是,判别输出函数中的支持向量采用一种稀疏核逼近方法获取,而其对应系数则由输入采样协方差矩阵的广义特征向量构成,整个算法避免了常规的二次规划(QP)求解过程.仿真结果表明,采用核函数算法的检测性能与SVM检测性能接近,但在较大规模样本集下可有效减小计算量. 相似文献
14.
模拟电路错误检测问题,即重点是检测出模拟电路芯片存在错误后确定错误元件或参数的问题,对于进一步明确错误产生原因,在设计或制造中加以改进,有重要的意义.经典做法是通过预先设置错误,并仿真得到其对应的响应数据,构造"错误字典",然后将测试信号与错误字典进行比对,识别其属于哪一类错误类型.本文提出一种基于数据稀疏表示方法来进行错误类型识别的新方法,它计算属于不同错误类型的数据在所有类型的数据构成的空间中的展开向量,根据得到的稀疏向量来判断其所属错误类型.对于稀疏表示方法无法进行准确分类识别的情况,采用SVM作为二级分类器进行修正.存在某些错误类型,其响应数据构成的空间之间线性相关性较强,对于稀疏表示后属于其中之一类型的数据,采用传统的SVM方法来加以辅助分类.在两个实验例子中,与SVM,Ada Boost以及没有加SVM辅助分类的单纯稀疏表示方法相比较,本文方法有更高的错误类型识别正确率. 相似文献
15.
李敏 《合肥学院学报(自然科学版)》2014,(4):21-25
以全国用水量的离散数据为例,根据分析目的把它构造成函数化数据,然后对函数化的数据进行函数型主成分分析,即对全国不同用水量区域进行分析研究,从而得到不同区域的主成分得分,找到用水量不平衡因素所在,为制订政策的决策者提供相应的参考。 相似文献
16.
基于核主成分分析和支持向量机的飞机舱音信号识别 总被引:1,自引:0,他引:1
为了提高飞机事故原因的调查准确性与实时性,提出了一种基于核主成分分析和支持向量机的舱音背景声识别方法.首先提取和分析了飞机驾驶舱话音记录器中所记录背景声信号的特征参数,然后分别以多项式核函数、sigmoid核函数和高斯核函数3种核函数作为内积,对3种核函数的降维特性进行了对比分析,最后将核方法与支持向量机结合,实现对舱音背景声的分类识别.实验结果表明:通过基于不同核函数的主成分分析方法与支持向量机的结合比较,确定以高斯核函数为内积的SVM分类方法具有较好的分类效果. 相似文献
17.
基于主元分析与支持向量机的人脸识别方法 总被引:27,自引:1,他引:27
基于支持向量机(SVM)在处理小样本,高维数及泛化性能等强方面的优势,提出了一种基于主元分析(PCA)与SVM的人脸识别方法,利用PCA方法对人脸图像进行特征提取,再利用SVM与最近邻分类器相结合的策略对特征向量进行分类识别,剑桥ORL的人极数据库的仿真结构验证了本算法是有效的。 相似文献
18.
模式分析的核函数设计方法及应用 总被引:1,自引:1,他引:1
利用卷积算子和H1(R)核函数给出了一种设计Hn(R)核函数的新方法,该方法简便易行。运用该方法设计的核函数,应用在轴承正常振动信号数据、轴承内圈、外圈以及滚动体故障振动信号数据进行核主成分分析(KPCA)中,仿真结果表明:该方法可以有效地识别轴承正常和内圈、外圈以及滚动体故障。 相似文献
19.
高秀梅 《淮阴师范学院学报(自然科学版)》2010,9(5)
作为一种新的特征抽取算法,核主分量分析(KPCA)已经广泛应用于人脸等图像识别任务中.但是该方法的时间复杂度依赖于训练样本的数目N,当N很大时,算法所耗费的时间是相当可观的.本文提出了基于图像矩阵的核主分量分析技术(I-KPCA),解决了上述核方法普遍存在的问题.在CENPARM I数据库上的实验结果验证了本文方法的有效性. 相似文献