共查询到20条相似文献,搜索用时 15 毫秒
1.
传统的侵入式负荷监测方法在实际应用中安装复杂,成本高,无法满足日益发展的电力系统需求.为此设计了一种基于STM32的非侵入式负荷监测系统,系统以STM32F103芯片为主控制器,利用AD8629放大器和ADS1256芯片进行高精度电信号采样,通过USB与上位机通信,在Labview界面中进行实时显示,并建立卷积神经网络算法模型进行负荷识别.将嵌入式系统与辨识算法进行结合,通过实验验证了用电负荷监测与识别的可行性,且系统实时性好,测量精度高,成本低,有较强的实用性. 相似文献
2.
负荷识别是非侵入式负荷监测的关键环节.针对原始电压电流轨迹特征选择有限、识别准确度低的问题,提出一种基于改进YOLOv5s(YOLOv5s是YOLOv5(you only look once的第5个版本)系列中预训练结构最小的模型)的非侵入式负荷识别算法.将坐标注意力(coordinate attention,简称CA)模块添加至YOLOv5s的主干网络,用双向特征金字塔网络(bi-directional feature pyramid network,简称BiFPN)取代YOLOv5s的常规特征提取网络.实验结果表明:相对于其他3种算法,该文算法有更高的负荷识别准确度.因此,该文算法具有有效性. 相似文献
3.
针对目前基于深度学习的非侵入式负荷辩识领域中存在的模型复杂度高、参数量大及获取长距离特征间依赖关系的能力弱等问题,提出一种基于注意力机制的轻量级负荷辨识模型.该模型以低时间维度的设备电流信息为输入,通过引入改进非局部注意力模块建模不同时间电流的特征关系,建立轻量级的时间残差卷积神经网络.在公开PLAID(即插设备标识数据集)和WHITED(全球家庭和工业瞬态能源数据集)上的实验表明:在设备识别率分别达到97.32%和99.32%的情况下,模型的计算量低至4×105,且模型的参数量小于5.2×104. 相似文献
4.
非侵入式电力负荷在线分解 总被引:7,自引:0,他引:7
基于用电设备正常工作时的稳态电流(包含基波和谐波)具有一定统计规律性,提出了一种非侵入式电力负荷在线分解方法.当某一电力负荷内部含有n类主要用电设备时,其电流可近似用这n类用电设备电流的线性叠加来估计.负荷分解是应用最优方法求取一组合理的权重系数,使负荷估计电流与负荷真实电流最为接近,从而确定电力负荷中不同类型用电设备的功率消耗比例.实验结果表明,所提出的负荷分解方法不仅具有较高的精度和较好的稳定性,而且便于在线实现. 相似文献
5.
非侵入式负荷识别(non-intrusive load monitoring,NILM)是一种不依赖用户内部装置,仅凭借外部分析工具和手段即可实现用户用电行为自动感知的方法.提高非侵入式负荷识别的精度,对于开展用能监测服务、实现节能降损具有重要意义.提出了一种基于彩色图像编码与深度学习的电力负荷识别方法.该方法首先在传统电压-电流(V-I)灰色轨迹法的基础上,利用双线性插值技术有效解决了像素点不连续的问题;然后考虑了特征之间的互补性,通过构造电流(R)、电压(G)和相位(B)3个通道,将数值特征嵌入灰色V-I轨迹中,从而得到了蕴含丰富电气特征的彩色V-I图像;最后,采用AlexNet深度学习算法对彩色V-I图像和对应设备标签进行有监督的学习,从而实现了不同类别电器设备的有效辨识.算例测试结果表明,提出的负荷识别方法的准确率高达97.7%.该结果充分验证了上述方法的有效性. 相似文献
6.
针对目前非侵入式负荷监测仅能识别单个家用电器、多种家用电器同时运行识别率低的问题,提出一种基于卷积神经网络(CNN)与K-means聚类结合的非侵入式家用电器识别方法。首先,通过改进的CUSUM边沿检测算法对获取的用户用电数据进行时间检测,提取负荷发生投切事件的功率波形;其次,通过高斯滤波法对提取的功率波形进行滤波处理,并将处理后的波形转化为像素图作为负荷特征库,一部分作为训练集用来训练K-means算法改进后的CNN模型,一部分作为测试集测试模型识别的精度;最后,利用搭建的实验平台进行实际测试分析。实验结果表明,所用模型对7种家用电器的识别率均为100%,验证了模型的有效性。通过K-means算法对卷积神经网络进行改进,增大相似特性负荷特征之间的区别,提高负荷辨识的准确率,为非侵入式负荷检测技术开发提供了参考。 相似文献
7.
针对目前负荷分解模型的深层负荷特征提取不充分,分解精度低以及训练成本高等问题,提出了一种多尺度特征融合模型。模型由负荷分解子网络及负荷识别子网络两部分构成,两个子网络均利用一维卷积和批量归一化等组成的卷积块进行负荷特征初提取,然后采用金字塔池化模块从多个维度精确提取深层负荷特征信息,并与特征初提取部分进行融合。金字塔池化模块使网络参数大大减少且降低了训练成本。同时与以往模型中的注意力机制不同的是,网络引入多头自注意力机制,每个注意力关注负荷特征的不同部分,从多个角度实现对重要负荷特征的筛选,进一步提高分解性能。最后,在UK-DALE和REDD数据集上进行实验,结果表明所提模型与四个基准模型相比,无论是负荷分解性能还是电器运行状态识别能力都有明显提升。 相似文献
8.
在极限学习机的非侵入式负荷识别算法中,由于输入权值和隐含层阈值的随机产生容易导致误判,鉴于此,提出了一种改进的遗传算法优化极限学习机方法.对遗传算法中选择算子进行改进,改进方法为求解出个体的适应度值,并按从小到大的顺序完成排序,将排完序的种群等分成4份,按照比例从4份中择优组成新种群,对新种群中剩余个体再从适应度较大的... 相似文献
9.
非侵入式负荷识别技术对电网系统的电力调度、风险估计等具有重要意义.现阶段非侵入式负荷识别的数据质量差,算法识别准确度低且只能处理低频或高频数据.针对非侵入式负荷识别数据质量差的问题,提出了数据修复、数据扩展等数据增强方法;针对非线性扰动降低准确度的问题,提出了一种基于1D-CNN的深度学习模型,该模型既可提取低频数据的... 相似文献
10.
《华中科技大学学报(自然科学版)》2021,49(10):85-90
针对传统人工智能负荷辨识算法网络参数规模庞大、计算复杂度高、辨识准确率不足的局限性,提出一种多维数据融合可视化方法,融合负荷的电压、原始电流和电压-无功电流轨迹信息,生成尺寸更小、区分度更高的真彩可视化图像,作为人工神经网络的输入数据.实验结果表明:在采用真彩可视化图像后,仅用不到传统算法1%规模的人工神经网络和计算量,就可以在PLAID(即插即用设备标识)数据集上达到96.63%的负荷辨识准确率、在WHITED(全球家庭和工业瞬态能量)数据集上达到99.05%的负荷辨识准确率. 相似文献
11.
深度学习被广泛应用于非侵入式负荷分解中,其分解精度高但存在网络结构复杂、训练过程极度耗时等问题,并且对计算资源有一定要求,难以与嵌入式设备集成使用。对此,面向低频数据,提出一种基于级联宽度学习与麻雀算法的非侵入式负荷分解方法。首先,改进宽度学习特征节点的连接方式,构建各目标设备的级联宽度学习负荷分解网络。然后,通过麻雀搜索算法确定各目标设备分解网络的最优特征节点和增强节点数,实现负荷的高效分解。最后,基于实际数据集UK-DALE进行了仿真实验,通过与常用的非侵入式负荷分解方法进行比较,验证了所提方法的优越性。 相似文献
12.
13.
针对已有负荷识别方法存在选取的负荷印记冗余度大及无法直接反映负荷功率信息的不足,提出一种多维数据图像化的非侵入式负荷识别方法.首先将负荷的电流波形、瞬时功率波形和电压-无功电流轨迹三个维度的负荷印记转换成灰度图像;然后将其分别加载到图像的红绿蓝通道上,得到带有功率信息的真彩色图像;最后通过简化的二维卷积神经网络进行负荷识别.实验结果表明:本方法能够提升图像的信息密度,使得所采用的人工智能网络在计算量和参数量都降低的情况下仍能在图像中找到最具有辨识力的区域进行高效的负荷识别;在PLAID(即插即用设备标识数据集)和WHITED(全球家庭和工业瞬态能量数据集)上分别达到了98.78%和99.50%的识别准确率. 相似文献
14.
15.
针对目前非侵入式负荷辨识存在模型训练时间过长以及负荷特征相近的电器辨识精度不高的问题,提出了一种基于CF-MF-SE联合特征的非侵入式负荷辨识方法。以稳态电流信号为基础,通过提取峰值因数表征波形的畸变程度,采用裕度因子表征信号的平稳程度,谱熵表征频谱结构复杂程度,并结合PSO-SVM实现负荷辨识。结果表明,新方法可解决电器电流波形相近不易识别的难题,减少训练时间,有效提高识别准确率和效率。所提方法将振动信号特征作为负荷特征引入负荷辨识领域,为非侵入式负荷辨识技术的特征选取提供了新思路,其中谱熵作为对负荷敏感的关键特征,与其他特征组合可明显提高辨识率,为实际应用中负荷特征的灵活选择提供了参考。 相似文献
16.
针对当前非侵入式负荷识别技术对低功率负荷识别效果差的问题,提出了使用一种新特征、并使用监督型机器学习算法进行负荷识别的方法。该方法除了使用传统的有功功率和三次谐波电流幅值外,还采用小波变换提取小波的能量系数作为新特征,使用支持向量机分类算法进行负荷识别。实验结果表明:随着低功率家用负荷的增多,该方法在多种家用负荷场景下,具有较高的负荷识别准确率和良好的鲁棒性。 相似文献
17.
提高负荷识别准确率是实现非侵入式负荷监测的关键技术。针对现有模型识别准确率低,特征冗余度高、可分性较差的问题,提出一种基于随机森林(RF)和遗传算法优化极限学习机(GA-ELM)的负荷识别方法。首先从稳态电流信号中提取时域和频域信息作为负荷特征。为进一步减小特征集的冗余度并剔除可分性较差的特征,使用随机森林算法对特征进行优选,得到最优特征集。最后使用遗传算法优化极限学习机的权值和偏置参数,建立负荷识别模型。利用所建立的模型对11个家用电器共16种负荷状态进行识别,实验结果表明,所提模型可以提高识别准确率,使用该模型可以对家用负荷进行快速有效识别。 相似文献
18.
居民用户作为智能电网的重要消耗端,合理用电对缓解能源危机起着至关重要的作用,用电量的分项计量及实时反馈能够引导用户自行优化用能习惯,同时帮助电网侧挖掘用户侧的节能潜力和需求响应潜力.非侵入式负荷监测是用电量分项计量的实现途径,本文针对现有高精度的基于深度学习的负荷识别算法运算复杂度高,无法用于家庭嵌入式设备的问题,提出... 相似文献
19.
20.
相似邻里查找模型可以辅助电力需求侧响应、智能能耗分析和异常诊断。针对传统研究仅计及总用电负荷,而忽略电力用户分项负荷曲线的不足,提出基于非侵入式负荷监测(Non-intrusive load monitoring, NILM)数据的电力用户相似邻里查找模型。首先,基于密度的带噪声数据应用的空间聚类方法(Density based spatial clustering of applications with noise, DBSCAN)消除异常数据,提取用户分项负荷的标准曲线;然后,基于余弦相似度函数描述分项负荷曲线分布形态的近似水平;最后,基于改进熵权法,对分项负荷曲线角度余弦值赋权,并计及加权相似度排序获得相似邻里。仿真分析结果表明,所提出的相似邻里查找模型可以充分挖掘用电特征,有效地实现相似邻里分类。 相似文献