首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以对苯二甲酸为有机配体,Fe(Ⅲ)为中心金属,采用溶剂热法合成了金属有机骨架材料MIL-101(Fe),通过XRD,SEM对其结构进行了表征.用MIL-101(Fe)吸附溶液中的As(Ⅲ),考察了溶液pH值、反应时间、溶液浓度及温度对吸附的影响.结果表明:溶液pH对吸附影响明显,pH=9时,吸附效果最佳;MIL-101(Fe)对As(Ⅲ)的吸附速率较快,吸附过程符合拟二级动力学;等温吸附实验数据用Langmuir和TemKin模型拟合良好,303 K条件下,MIL-101(Fe)对As(Ⅲ)的最大吸附量为211.42 mg·g~(-1);热力学参数ΔG、ΔH均小于0,吸附过程为自发放热反应;MIL-101(Fe)的中心金属Fe与亚砷酸根的配位作用在吸附过程中起主要作用.  相似文献   

2.
为探索以除铁除锰水厂反冲洗铁锰泥为主要原料制备除砷颗粒吸附剂(granular adsorbents for arsenic removal,GAAR)的最佳工艺和除砷效果,通过正交试验优化制备工艺,利用扫描电镜与能谱分析(SEM-EDS),X线衍射(XRD)和比表面积分析技术(BET)对GAAR进行表征并考察其对As(Ⅲ)的吸附效果。研究结果表明:预热温度为180℃、预热时间为20 min、焙烧温度为350℃、焙烧时间为120 min为制备GAAR的最优条件;焙烧温度是影响除砷效果的主要因素,高温促使铁氧化物向赤铁矿转变并加剧孔道合并从而降低该温度下制得颗粒吸附剂的吸附能力;GAAR表面粗糙,内部物相成分为水铁矿和部分赤铁矿、石英,比表面积为43.8 m2/g,是典型的介孔材料;GAAR对砷的吸附过程符合准二级动力学,等温吸附符合Freundlich方程,GAAR对As(Ⅲ)的最大吸附量为4.77 mg/g。  相似文献   

3.
不同形态砷在新生态MnO2界面上的吸附作用   总被引:1,自引:0,他引:1  
研究了新生态MnO2对2种形态砷的吸附作用.在相同的实验条件下,As(Ⅴ)的吸附动力学数据符合Langergren二级动力学方程;As(Ⅲ)的吸附数据符合简单级数的二级动力学方程.2种形态砷的吸附过程受pH的影响较大;吸附过程中SO42-,PO43-等阴离子对2种形态砷均有吸附竞争作用;吸附过程不受离子强度的影响.  相似文献   

4.
将浊点萃取与钨丝电热蒸发原子荧光光谱分析法联用,测定了水样中的As(Ⅲ)和As(Ⅴ).该法利用非离子表面活性剂Triton X114的浊点现象,在pH为3时,As(Ⅲ)与吡咯烷二硫代氨基甲酸铵(APDC)络合形成疏水性螯合物被萃取到表面活性剂的富胶束相,从而实现富集并达到与As(Ⅴ)分离.测定As(Ⅴ)时则预先用Na2S2O3将其还原为As(Ⅲ)而测定总As,然后由差减法求得As(Ⅴ)的含量.本法对As(Ⅲ)的检出限(3σ)为0.9 μg/L,富集倍数为29(取样10 mL),可用于水样中As(Ⅲ)和A  相似文献   

5.
研究通过吸附动力学、吸附热力学和吸附解吸实验,研究了两种晶型水铁矿对五价砷As(V)的吸附性能.结果表明,As(V)在2-线和6-线水铁矿表面的吸附可用二级动力学方程拟合,其化学反应速率K2分别为0.077 g·(mg·h)-1和0.031 g·(mg·h)-1.2-线水铁矿由于其无定形形态,对As(V)的吸附效果优于...  相似文献   

6.
湖南锡矿山地区的采矿活动使当地水土锑污染严重﹒基于此,本文采用吸附等温和吸附动力学实验方法,结合红壤土基本理化性质,阐明了不同浓度、温度、时间、pH值条件下红壤土对Sb(Ⅲ)和Sb(Ⅴ)的吸附特征﹒结果表明:1)随着浓度的增加,红壤土对Sb(Ⅲ)和Sb(Ⅴ)的吸附量先增加后趋于平稳﹒2)Langmuir模型能更好地描述红壤土对Sb(Ⅲ)和Sb(Ⅴ)的吸附,且吸附过程为发生在均匀表面的单层化学吸附﹒3)吸附动力学拟合结果显示,红壤土在高温时吸附效果好,其对Sb(Ⅲ)和Sb(Ⅴ)的吸附反应迅速阶段分别在0~110和0~90min,且二者的吸附效果差异与Sb离子在吸附剂表面电位以及界面扩散有关;其对Sb(Ⅲ)的吸附均能被准一级动力学方程和准二级动力学方程较好地拟合;其对Sb(Ⅲ)的吸附既有物理扩散也有化学吸附,对Sb(Ⅴ)的吸附主要为化学吸附﹒4)pH值增加不利于红壤土对Sb(Ⅲ)和Sb(Ⅴ)的吸附﹒  相似文献   

7.
离子液体负载型碳纳米管吸附除砷研究   总被引:1,自引:0,他引:1  
通过浸渍法制备4种离子液体负载型碳纳米管吸附材料,分别采用静态法和动态法考察其对溶液中As(Ⅲ)和As(Ⅴ)的去除性能。研究结果表明:负载离子液体的碳纳米管对As(Ⅲ)和As(Ⅴ)具有较强的吸附作用,吸附过程属于单分子层的化学吸附,吸附行为符合Langmiur吸附;Im-CNT,tBu-CNT,Nme-CNT和Nmb-CNT这4种吸附材料对As(Ⅲ)的去除效果优于对As(Ⅴ)的去除效果;负载氮氧杂冠醚型离子液体的碳纳米管对砷的去除效果比负载咪唑型离子液体的碳纳米管的去除效果更优,说明冠醚型离子液体的空腔结构对砷具有良好的配合性能,同时,冠醚结构中取代烃基的长度对砷的去除也有一定的影响。  相似文献   

8.
基于铁基材料对砷的独特的亲合力及介孔材料的高比表面积,用水热法合成铁基介孔微球(Fe-MS),在对其进行系列表征后,考察了其吸附除砷效果。X射线衍射(XRD)和扫描电镜(SEM)表征结果均显示Fe-MS是非晶微球。N2吸附脱附分析结果表明,Fe-MS具有较大的比表面积(407 m2/g)且呈规整双孔径分布(3.7 nm与5.3 nm)。吸附As(V)研究结果显示,在pH=3~4,初始As(V)=100 ppb时,其去除率达99%以上;吸附等温线符合Langmuir方程;吸附动力学符合准二级动力学方程;Fe-MS对As(V)的吸附效率不受背景离子强度的影响,表明其吸附机理为稳定的球内络合作用。  相似文献   

9.
采用溶胶沉淀结合超声分散处理的方法,制备平均粒径为70 nm,比表面积为212 m2.g-1的纳米级水合氧化铈(Nano-HCO)吸附剂.在pH值为4~10,初始As(Ⅲ)质量浓度为10 mg.L-1,吸附剂投加量为1.0 g.L-1的反应条件下,可在2 h内将溶液中As(Ⅲ)质量浓度降低到0.01 mg.L-1以下.Nano-HCO吸附剂对砷的吸附等温线服从Langmuir方程,对应不同pH值,其对As(Ⅲ)的吸附容量较未经超声分散处理的水合氧化铈提高29%~141%,且水温的升高有助于增加As(Ⅲ)的吸附程度.  相似文献   

10.
采用绿色无害的淀粉作为稳定剂合成了纳朱Fe3O4粒子,并用于水中砷(As)的去除.结果 表明,水中砷主要存在形式为As(Ⅲ)和As(Ⅴ).Fe3O4纳米粒子对As(Ⅲ)和As(Ⅴ)都有良好的去除效果,吸附过程符合准二级动力学,且不同价态的As去除过程受pH值和腐殖酸(HA)影响不同.其中,纳米Fe3O4对As(Ⅲ)的吸...  相似文献   

11.
采取批实验方法研究不同pH值条件下,Sb(Ⅲ)和Sb(Ⅴ)在蒙脱土表面的吸附与解吸行为,以及离子强度对吸附行为的影响。结果表明,pH值对Sb(Ⅲ)和Sb(Ⅴ)在蒙脱土表面的吸附行为影响显著,pH值在3~10时,随介质pH值的升高,Sb(Ⅲ)和Sb(Ⅴ)的吸附均减弱;离子强度对吸附影响不显著,Sb(Ⅴ)的解吸量随吸附介质pH值的增加而增加。  相似文献   

12.
针对毒性大、污染严重的含砷废水,采用铁粉和活性炭为原料,加入一定的粘合剂制备铁炭复合材料,然后在复合材料中掺杂二氧化铈(Ce O2)制备了新型铁炭复合材料,研究考察了制备过程中铁炭质量比、二氧化铈质量分数、焙烧温度等3个因素对材料吸附As(Ⅲ)性能的影响,并对吸附过程进行了动力学研究。结果表明,稀土掺杂铁炭复合材料对废水中的As(Ⅲ)具有显著的吸附效果。在铁炭质量比为1∶1、二氧化铈质量分数为3%、焙烧温度为600℃的条件下所制得的稀土掺杂铁炭复合材料对于含As(Ⅲ)浓度为10 mg/L的废水除砷率高达93.39%。动力学研究表明,复合材料对于含As(Ⅲ)浓度为10~30 mg/L的废水具有良好的吸附效果,平衡吸附容量最高可达3.890 mg/g,吸附规律符合Lagergren一级动力学方程和颗粒内扩散模型,吸附过程主要受颗粒内扩散的控制。  相似文献   

13.
利用TiO2掺杂Pd2+吸附剂进行了酸性As(Ⅲ)废水的去除实验,并与活性炭吸附法进行了对比,考察了吸附时间、吸附剂用量、溶液pH值等因素对实验的影响.结果表明,对于ρ(As(Ⅲ))=15 mg/L的水样,As(Ⅲ)的去除率达98.5%,高于或相当于活性炭吸附法,处理后的水质达到了国家排放标准.  相似文献   

14.
研究了水溶液中水合氧化铈(HCO)吸附As(Ⅲ)和As(Ⅴ)的热力学及机理.绘制了不同温度下的等温吸附曲线,计算了热力学函数(标准吸附自由能变△G00、标准吸附焓变△H00、标准吸附熵变△S00).结果表明:HCO在所研究浓度和温度范围内对As(Ⅲ)和As(Ⅴ)的吸附等温线均能很好地采用Langmuir方程进行描述,其吸附过程均属于自发的熵驱动吸热反应,是一个熵增过程,其标准吸附焙变△H00分别为20.13和14.16 kJ/mol,标准自由能△G 0的减小是该吸附过程的推动力.结合红外光谱分析其主要反应机理趋向于配位化学吸附.  相似文献   

15.
在黑光灯(λ_(max)=365 nm)照射下,对针铁矿去除As(Ⅲ)进行研究.考察初始pH、针铁矿投加量、As(Ⅲ)初始质量浓度对As (Ⅲ)去除效能的影响,探讨不同初始pH (3. 0~9. 0)下光-针铁矿体系对As(Ⅲ)的去除机制.结果表明,光促进了As (Ⅲ)在针铁矿体系中的去除,反应90 min后不同pH值下As(Ⅲ)的去除率都超过90%. As(Ⅲ)的去除反应动力学符合Langmuir-Hinshelwood (H-L)动力学方程.低初始pH时As(Ⅲ)去除以光氧化为主,主要通过空穴(hv+b)和表面羟基自由基(HO·ad)氧化,液相中羟基自由基(HO·free)次之,HO_2·/O_2~-·贡献最小;随着初始p H增大到7. 0后,As(Ⅲ)以吸附为主,As(Ⅲ)的光氧化基本通过hv+b实现.在不同初始p H下As(Ⅲ)的去除都以表面反应为主.  相似文献   

16.
研究纳米氧化铜对三价砷(As(Ⅲ))的吸附性能。采用水热法合成制备纳米氧化铜(CuO-NPs),并将其应用于水中砷离子的吸附脱除,通过透射电子显微镜、X-射线衍射(XRD)对CuO-NPs进行表征。制备的CuO-NPs形态稳定,平均直径在20~50nm,且其零电荷点为7. 8。同时,通过批处理吸附试验探究了吸附时间、溶液p H、初始浓度等因素对水中As(Ⅲ)去除率的影响。结果表明:弱碱性条件有利于CuO-NPs对As(Ⅲ)的去除,且p H为8时,CuO-NPs对As(Ⅲ)去除率最高,为97. 05%; As(OH)3和As(OH)2O-与氧化铜水合物之间的配位交换,是As(Ⅲ)被吸附去除的主要途径; As(Ⅲ)对CuO-NPs的等温吸附符合Langmuir方程,最大吸附容量可达1 085. 040 3μg/g,且该过程是自发吸热反应、符合准二级动力学方程。  相似文献   

17.
实验制备了新生态MnO2悬浊液并测定了其性质;从吸附动力学、等温吸附、pH值和离子强度等几个方面,探讨了新生态MnO2悬浊液对水中As(Ⅲ)去除作用的机理.结果表明:新生态MnO2对As(Ⅲ)去除过程符合二级动力学方程;pH=6.5时等温线符合Langmuir和Frundlich方程.pH值影响因素的研究表明,新生态MnO2对As(Ⅲ)吸附只是和体系的pH值有关,而与H3AsO3的pKa无关的非特性吸附.  相似文献   

18.
采用一步水热法合成了铁掺杂的钛酸纳米管(Fe-TNTs),并用于同步吸附和光催化以去除水体中的砷.TEM,EDS和XRD等表征证实了铁成功掺杂到钛酸纳米管(TNTs)中,同时表明该材料具有较大的比表面积(162.8m2/g)和较高的等电点(5.49),利于其对砷的吸附.Fe-TNTs对As(Ⅲ)和As(Ⅴ)的吸附等温线符合Two-site Langmuir模型,理论最大吸附量分别为17.67和90.96mg/g.高As(Ⅴ)的吸附性能得益于低p H值下的静电吸引作用,而对As(Ⅲ)的吸附机理为配位作用.铁的掺杂不但减小了TNTs的能带宽度,而且Fe3+可以充当临时的电子-空穴对捕获剂,以阻止TNTs电子-空穴对的复合,由此提高了TNTs的光催化性能.光催化30min,As(Ⅲ)即可完全被氧化成As(Ⅴ),As(Ⅴ)继而可通过Fe-TNTs的吸附被去除,因此Fe-TNTs对砷的去除过程是一个同步光催化和吸附的过程.  相似文献   

19.
HPLC-HG-AFS测定As(Ⅲ)和As(Ⅴ)的方法研究   总被引:1,自引:0,他引:1  
选用四丁基氢氧化铵作为As(Ⅲ)和As(Ⅴ)的离子对试剂,优化了高效液相色谱的分离条件,在Pecosphere C18色谱柱上有效地分离了As(Ⅲ)和As(Ⅴ).随后在氢化物发生原子荧光光谱仪最佳测定条件下,成功地测定了As(Ⅲ)和As(Ⅴ),其精密度分别为6.8%和4.0%.为HPLC—HG—AFS联用在线分离测定做出了有益的探索.  相似文献   

20.
粒状活性炭对水中双酚A吸附性能的研究   总被引:1,自引:0,他引:1  
研究了粒状活性炭(GAC)对水环境中内分泌干扰物双酚A(BPA)的吸附动力学和热力学特性,分别讨论了温度、溶液pH以及背景离子的存在等因素对整个吸附过程的影响。研究结果表明:在吸附开始阶段,不同质量的活性炭吸附速率均较大,约3 h达到吸附平衡。吸附量随着温度的升高而减小;当pH≥10时,吸附量随着双酚A的电离而减小;背景离子的存在使得吸附量下降。活性炭对双酚A的吸附过程遵循二级动力学方程。用Langmuir方程可以比较好的对吸附等温线进行拟合;对吸附热力学研究表明:ΔH0,说明吸附为放热过程;ΔG0,说明双酚A倾向于从溶液中吸附到活性炭表面,反应过程是自发进行的;ΔS0,说明吸附过程对溶液体系属于熵减小的过程,活性炭对双酚A的吸附比解吸强烈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号