共查询到13条相似文献,搜索用时 65 毫秒
1.
两传感器信息融合稳态最优Kalman滤波器 总被引:1,自引:2,他引:1
应用现代时间序列分析方法,基于ARMA新息模型提出了两传感器最优信息融合稳态Kalman滤波器。为实现最优融合,分别提出了计算局部滤波稳态误差方差和协方差阵的Lyapunov方程和拟Lyapunov方程及其迭代算法,并证明了算法的收敛性。一个仿真例子说明了其有效性。 相似文献
2.
多传感器按对角阵加权信息融合Kalman滤波器 总被引:2,自引:1,他引:1
在按对角阵加权线性最小方差最优信息融合准则下,提出了多传感器按对角阵加权信息融合稳态Kalman滤波器,它等价于关于状态分量的按标量加权信息融合Kalman滤波器,与按矩阵加权信息融合Kalman滤波器相比,可明显减小计算负担,便于实时应用。一个雷达跟踪的仿真例子说明了其有效性。 相似文献
3.
应用Kalman滤波方法,基于Riccati方程,对输入噪声和观测噪声相关,且传感器观测噪声相关的两传感器系统,在线性最小方差最优信息融合准则下,提出了按矩阵加权最优信息融合Kalman滤波器和平滑器。为了计算最优加权阵,提出了局部估计误差互协方差阵的计算公式。同单传感器情况相比,可提高融合估计精度。一个目标跟踪系统的仿真例子说明了其有效性。 相似文献
4.
多传感器单通道信息融合Wiener滤波器 总被引:3,自引:8,他引:3
应用现代时间序列分析方法,对于带白色观测噪声的单通道ARMA信号,基于ARMA新息模型,提出了多传感器线性最小方差最优信息融合Wiener滤波器,可统一处理滤波、平滑和预报问题。同单传感器情形相比,可提高滤波精度、算法简单、便于实时应用。一个跟踪系统的仿真例子说明了其有效性。 相似文献
5.
应用Kalman滤波方法,对于带白色和有色观测噪声单通道ARMA信号,基于Riccati方程,在线性最小方差按标量加权的最优信息融合准则下,提出了多传感器分布式信息融合Wiener信号滤波器。提出了计算局部滤波误差间的互协方差的Lyapunov方程,可用于计算最优加权系数。同单传感器情形相比,可提高滤波精度。一个三传感器信息融合Wiener跟踪滤波器的仿真例子说明了其有效性。 相似文献
6.
多传感器线性最小方差最优信息融合估计准则 总被引:18,自引:6,他引:12
用Lagrange乘数法和矩阵微分运算,分别提出了按矩阵加权、按标量加权和各分量按标量加权的三种线性最小方差信息融合估计准则,其中考虑了估计误差之间的相关性,推广和发展了现有文献的结果。文中比较了三种融合估计的精度和计算负担,可应用于信息融合状态或信号最优估计。 相似文献
7.
8.
对含未知模型参数和未知噪声方差的多传感器自回归滑动平均(ARMA)信号,应用递推辅助变量(RIV)算法得到局部模型参数估值器,用相关方法得到局部噪声方差估值器,然后用取局部估值器的平均得到信息融合估值器。将这些融合估值器代入ARMA信号的全局最优分布式融合Kalman滤波器,提出了一种自校正分布式融合Kalman滤波器。用动态误差分析方法证明了它收敛于全局最优分布式Kalman滤波器,因而它具有渐近全局最优性。一个目标位置跟踪系统仿真例子说明了其有效性。 相似文献
9.
应用Kalman滤波方法,基于Riccati方程,对于带相关噪声的系统,在线性最小方差融合准则下,提出了两传感器按矩阵加权信息融合超前k步稳态最优Kalman预报器,给出了最优加权阵和最小融合预报误差方差阵的具体计算公式.同单传感器情形相比,可提高预报器的精度.一个跟踪系统的仿真例子说明了其有效性. 相似文献
10.
两传感器信息融合超前κ步稳态最优Kalman预报器 总被引:2,自引:0,他引:2
应用Kalman滤波方法 ,基于Riccati方程 ,对于带相关噪声的系统 ,在线性最小方差融合准则下 ,提出了两传感器按矩阵加权信息融合超前k步稳态最优Kalman预报器 ,给出了最优加权阵和最小融合预报误差方差阵的具体计算公式。同单传感器情形相比 ,可提高预报器的精度。一个跟踪系统的仿真例子说明了其有效性 相似文献
11.
基于Kalman滤波,应用加权观测融合方法,对于带白色观测噪声的单通道ARMA信号,提出了全局最优多传感器观测融合Wiener信号滤波器。可统一处理信号融合滤波、平滑和预报问题。同集中式规测融合方法和分布式状态融合方法相比.不仅可获得全局最优Wiener信号滤波器,而且明显减小计箅负担,便于实时应用。一个三传感器加权观测融合仿真例子说明了其有效性。 相似文献
12.
应用现代时间序列分析方法,基于ARMA新息模型、白噪声估值器和观测预报器,对带滑动平均(MA)有色观测噪声的单通道ARMA信号,在线性最小方差最优信息融合准则下,提出了多传感器信息融合Wiener滤波器,可统一处理滤波、平滑和预报问题。提出了用于得到最优加权系数的局部滤波误差方差和协方差计算公式。同单传感器情形相比,可提高滤波精度。一个目标跟踪系统的仿真例子说明了其有效性。 相似文献
13.
多传感器分布式信息融合Wiener状态估值器 总被引:1,自引:0,他引:1
应用现代时间序列分析方法,基于ARMA新息模型、白噪声估值器和观测预报器,在按矩阵加权、按 标量加权和按对角阵加权的线性最小方差最优信息融合规则下,提出了相应的三种最优分布式融合Wiener 状态估值器,可统一处理融合滤波、平滑和预报问题。为了计算最优加权,提出了状态估计误差方差阵和互 协方差阵的计算公式。同单传感器情形相比,可提高滤波精度。一个带四传感器目标跟踪系统的仿真例子 说明了其有效性和正确性,并说明了三种加权融合估计精度无显著差异,因而采用按标量加权融合器可显著 减小计算负担,便于实时应用。 相似文献