首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesizedBacillus thuringiensis insecticidal protein gene cryIA(b&c) and the synthesized geneGNA, (the mannose specific lectin from snowdrop (Galanthus nivalis)), tumefaciens have been inserted into plant expression vector pGW4BAI. Leave stripes ofNicotiana tabacum var. K326 have been transformed withAgrobacterium tumefaciens strain LBA4404 harboring the plant expression vector. 28 kanamycin resistant tobacco plants have been obtained. PCR and Southern blot analyses show that the foreigncryIA andGNA genes have been inserted into the genome of transformed tobacco plants. Haemagglutination assays show thatGNA has a functional activity. Leaf disc bioassays against cotton bollworm (H. armigera) show that the transgenic tobacco plants have a high insecticidal activity. The inhibition of aphid population in leaf disc bioassays againstMyzus persicae shows that the fecundity of aphid on transgenic plants is lower than that on untransformed plants; the aphid population on the transgenic tobacco plants is 25%–70% that on untransformed tobacco plants. ELISA analysis of ClyIA protein in tobcco leaves provides similar data to bioassay results. Through the two bioassays againstH. armigera andM. persicae, several transgenic tobacco plants showing high insect-resistant activities to both pests have been obtained.  相似文献   

2.
Transgenic tobacco plants carrying CrylAc, Crylle or both genes were obtained. In the leaves of transgenic plants carrying both genes, the contents of CrylAc and Crylle proteins were 0.173% and 0.131% of the total proteins, respectively. CrylAc protein content was 0.182 % and Cry1 le protein content was 0.124% of the total proteins in the leaves of transgenic plants containing only one Bt gene. Fresh leaves of transgenic tobacco and wild-type plants were used for the insect bioassay against wild-type and Cry1Ac-resistant cotton bollworm (Helicoverpa armigera). The bioassay results showed that transgenic plants carrying both genes were significantly more toxic to wild-type and CrylAc-resistant cotton bollworm than those carrying CrylAc or Crylle alone. This study indicates that the higher toxicity of transgenic tobacco plants carrying both genes is caused by the cooperative function of both Bt proteins, thus providing a potential way to delay the development of insect resistance to transgenic crops.  相似文献   

3.
Insecticidal activity of residual Bt protein at the second trophic level   总被引:1,自引:0,他引:1  
Since the first commercial release of transgenic crop expressing genes from Bacillus thuringiensis (Bt), there have been concerns about its potential impact on the environment. Research has focused on the ecological effects from second exposure to Bt prot…  相似文献   

4.
There are currently three kinds of transgenic Bt insect-resistant cotton germplasm lines, Shanxi 94-24, Zhongxin 94 and R19, in China. They showed high resistance to the neonate larvae of bollworm (Helicoverpa armigera). Transgenic Bt insect-resistant cotton varieties or hybrids have been bred using the three kinds of germplasm lines as parents. Our researches reveal that there exist different expressions in resistant level at different developmental stages in the three categories of germplasm lines. When neonate larvae are fed with leaves of cotton plant at the seeding stage with less than 10 leaves on the main stem, the mortality of the neonate larvae is 100%, but the resistance level will decline at later season. When Bt gene has been transferred to the cotton genome, it can be steadily transferred to the progeny, the level of resistance to bollworm keeps fundamentally uniform. Such insects as tobacco budworm (Heliothis virencens) in laboratory directive selection are very apt to produce resistance to the Bt insecticidal crystal protein. From the present crop system of cotton region in the Yangtze and Yellow River Valleys, and the expression characteristic of transgenic Bt resistant cotton, we suggest that the resistance to toxin protein in bollworm is not apt to be produced if the transgenic Bt insect-resistant cotton varieties are released and grown in the regions except in the Xinjiang cotton region. The managing strategies to delay or retard the resistance are discussed.  相似文献   

5.
The cry1Ah gene was one of novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8. Two plant expression vectors containing cry1Ah gene were constructed. The first intron of maize ubiqutinl gene was inserted between the maize Ubiquitin promoter and cry1Ah gene in one of the plant expressing vectors (pUUOAH). The two vectors were introduced into maize immature embryonic calli by microprojectile bombardment, and the reproductively plants were acquired. PCR and Southern blot analysis showed that foreign genes had been integrated into maize genome and inherited to the next generation stably. The ELISA assay to T1 and T2 generation plants showed that the expression of CrylAh protein in the construct containing the ubil intron (pUUOAH) was 20% higher than that of the intronless construct (pUOAH). Bioassay results showed that the transgenic maize harboring cry1Ah gene had high resistance to the Asian corn borers and the insecticidal activity of the transgenic maize containing the ubil intron was higher than that of the intronless construct. These results indicated that the maize ubil intron can enhance the expression of the Bt cry1Ah gene in transgenic maize efficiently  相似文献   

6.
《科学通报(英文版)》1999,44(22):2051-2051
The synthesized Bacillus thuringiensis insecticidal protein gene crylA(b&c) and the synthesized gene GNA, (the mannose specific lectin from snowdrop ( Galanthus nivalis)), tumefaciens have been inserted into plant expression vector pGW4BAI. Leave stripes of Nico-tiana tabacum var. K326 have been transformed with Agrobacterium tumefaciens strain LBA4404 harboring the plant expression vector. 28 kanamycin resistant tobacco plants have been obtained. PCR and Southern blot analyses show that the foreign crylA and GNA genes have been inserted into the genome of transformed tobacco plants. Haemagglutination assays show that GNA has a functional activity. Leaf disc bioassays against cotton bollworm ( H. armigera) show that the transgenic tobacco plants have a high insecticidal activity. The inhibition of aphid population in leaf disc bioassays against Myzus persicae shows that the fecundity of aphid on transgenic plants is lower than that on untransformed plants; the aphid population on the transgenic tobacco plants is 25%-70% that on untransformed tobacco plants. ELISA analysis of CrylA protein in tobcco leaves provides similar data to bioassay results. Through the two bioassays against H. armigera and M. persicae, several transgenic tobacco plants showing high insect-resistant activities to both pests have been obtained.  相似文献   

7.
LSD1-related proteins of Arabidopsis with LSDl-like zinc finger domains regulate disease resistance and programmed cell death (PCD). We cloned a rice OsLOL2 gene, orthologous to LSD1 of Arabidopsis and expressed it in a tobacco plant. Transgenic tobacco lines displayed enhanced disease resistance to a virulent bacterium Pseudomonas syringae pv. tabaci (Pst). RT-PCR analysis showed that overexpression of OsLOL2 in transgenic tobacco lines resulted in upregulation of two pathogenesis-related (PR) protein genes, PR2 and PR5. Our results suggest that overexpression of OsLOL2 in transgenic tobacco enhances the resistance through the induction of PR proteins and hypersensitive response-like reaction.  相似文献   

8.
Transgenic tobacco plants carrying Cry1Ac, Cry1Ie or both genes were obtained. In the leaves of transgenic plants carrying both genes, the contents of Cry1Ac and Cry1Ie proteins were 0.173% and 0.131% of the total proteins, respectively. Cry1Ac protein content was 0.182% and Cry1Ie protein con- tent was 0.124% of the total proteins in the leaves of transgenic plants containing only one Bt gene. Fresh leaves of transgenic tobacco and wild-type plants were used for the insect bioassay against wild-type and Cry1Ac-resistant cotton bollworm (Helicoverpa armigera). The bioassay results showed that transgenic plants carrying both genes were significantly more toxic to wild-type and Cry1Ac-resistant cotton bollworm than those carrying Cry1Ac or Cry1Ie alone. This study indicates that the higher toxicity of transgenic tobacco plants carrying both genes is caused by the cooperative function of both Bt proteins, thus providing a potential way to delay the development of insect resis- tance to transgenic crops.  相似文献   

9.
The potential ecological risks ofBacillus thurigiensis (Bt) insecticides and Bt-crops have caused increasing concern since their commercial release in the field, among which pests’ resistance to Bt-crops is the major ecological risk. Refuge tactic, which can produce sensitive populations, has proved to be a key and sound resistance management strategy in USA and Australia; however, no tactics have been performed in China where Bt-cotton is mostly planted with other host crops of cotton bollworm. Genetic variation and gene flow among different host populations of the cotton bollwormHelicoverpa armigera were analyzed using PCR fingerprinting method. The results show that maize and castor-oil plant, as well as cotton can take effect as refuges to prevent resistance of cotton bollworm to Bt-cotton, while peanut and sesame are not as suitable for planting with Bt-cotton as refuges in the field as low gene flow was detected among populations on peanut, sesame and Bt cotton.  相似文献   

10.
A new plant expression vector (pBS29K-BA) containing two insect resistant genes, a synthetic chimeric gene BtS29K encoding the activated insecticidal protein Cry1Ac and a gene API-BA encoding the arrowhead (Sagittaria sagittifolia L.) proteinase inhibitor (API) A and B, is constructed. Transgenic tobacco plants expressing these two genes are obtained through Agrobacterium-mediated transformation of tobacco leaf discs. The average expression levels of Cry1Ac and API-BA proteins in transgenic plants are of 3.2 μg and 4.9 μg per gram fresh leaf respectively. The results of insecticidal assay of transgenic plants indicate that the pBS29K-BA transformed plants are more resistant to insect damage than the plants expressing the Cry1Ac gene or API-BA gene alone.  相似文献   

11.
Resistance-like sequences have been amplified from first strand cDNA and genomic DNA of rice by PCR using oligonucleotide primers designed from sequence motifs conserved between resistance genes of tobacco andArabidopsis thaliana. 3 PCR clones, designatedOsr1, Osr2 andOsr3 which were 98% identical in nucleotide sequence level, have been found to be significantly homologous to known plant resistance genes and all contained the conserved motifs of NBS-LRR type resistance genes, such as P-loop, kinase2a, kinase3a and transmembrane domain.Southern hybridization revealed that rice resistance gene hornologueswere organized as a cluster in the genome. RFLP mapping using a DH population derived from anindica/japonka cross (Zhaiyeqing 8/Jingxi 17) and an RFLP linkage map assigned two copies ofOsrl and one copy ofOsr3 to the distal position of chromosome 12 where a blast resistance QTL has been mapped previously. Northern blot analysis showed thatOsrl gene was constitutively transcribed in rice leaves, shoots and roots. Further study concerning isolation of full-length cDNAs would be conducive to elucidating the functions of these genes.  相似文献   

12.
The cry1Ah gene was one of novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8. Two plant expression vectors containing cry1Ah gene were constructed. The first intron of maize ubiqutin1 gene was inserted between the maize Ubiquitin promoter and cry1Ah gene in one of the plant expressing vectors (pUUOAH). The two vectors were introduced into maize immature embryonic calli by microprojectile bombardment, and the reproductively plants were acquired. PCR and Southern blot analysis showed that foreign genes had been integrated into maize genome and inherited to the next generation stably. The ELISA assay to T1 and T2 generation plants showed that the expression of Cry1Ah protein in the construct containing the ubi1 intron (pUUOAH) was 20% higher than that of the intronless construct (pUOAH). Bioassay results showed that the transgenic maize harboring cry1Ah gene had high resistance to the Asian corn borers and the insecticidal activity of the transgenic maize containing the ubi1 intron was higher than that of the intronless construct. These results indicated that the maize ubi1 intron can enhance the expression of the Bt cry1Ah gene in transgenic maize efficiently  相似文献   

13.
For the temporally and spatially regulated expression of the barnase gene in plant, two kinds of plasmids with cre gene and its directly repeat recognition sitesiox from bacteriophage P1 were constructed and co-transformed into tobacco by agrobacterium mediated procedure. The transgenic plants were conformed by PCR analysis. The blocking fragment between the twolox directly repeat sites was excised by Cre protein in the transgenic plant genome. Cloning and sequencing the DNA fragment from the co-transformed plant DNA showed that the precise DNA excision occurred in transgenic tobacco genome directed by Cre/lox site-specific recombination.  相似文献   

14.
An F2 population developed from theXa-4 near isogenic lines, IR24 and IRBB4, was used for fine mapping of the rice bacterial blight resistance gene,Xa-4. Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al. and the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct the genetic linkage map around the geneXa-4 by scoring susceptible individuals in the population.Xa-4 was mapped between the RFLP marker G181 and the polymerase chain reaction (PCR) marker M55. The R gene homologous fragment marker RS13 was found co-segregating withXa-4 by analyzing all the plants in the population. This result opened an approach to map-based cloning of this gene, and marker RS13 can be applied to molecular marker-assisted selection ofXa-4 in rice breeding programs.  相似文献   

15.
Mercury pollution has caused severe damage to environment and great attention has been paid to its control. Phytoremediation may become one of the most efficient measures to recover the polluted soil since it is economical, highly efficient and friendly to environment. In this report, plant genetic engineering methods were employed to modify the DNA sequence of merB genes that catalyze the conversion of organomercurals into ionic mercury. The modified merBhe genes were introduced into tobacco by Agrobacterium, and the resultant transgenic plants were verified by Southern and Northern hybridization. High level of organomercurial resistance was detected on progenies of transgenic plants, some of which were resistant to PMA (phenyl mercury acetate) of 2.5 μmol/L whereas 0.1 μmol/L PMA killed the seedlings of wild-type tobacco in soiless culrure. With the increase of PMA concentration, the inhibition of the seedling growth became apparent. This result makes it possible to breed mercury-resistant tobacco for phytoremediation of mercury-polluted soil.  相似文献   

16.
17.
There are 3 kinds of transgenicBt strains, Shanxi 94-24, Zhongxin 94, and R19, in upland cotton in China. Their transgenicBt insect-resistance cultivars or hybrids have been developed and grown by farmers. Genetic studies indicate that the resistance of the 3 transgenicBt cotton strains toHelicoverpa armigera is controlled by one pair of non-allelic dominant genes. Linkage relationship between the resistant genes of R19 and Shanxi 94-24 transgenicBt strains shows that they may be inserted in the same chromosome. F1 hybrids crossed among the 3 strains show that high levels of protection from feeding damage are the same as that of their parents. Therefore, there is no co-suppression phenomenon in many transgenic plants. The results presented here afford a fundamental reliance in developing transgenicBt insect-resistant cultivars and exploiting the heterosis of hybrids in upland cotton.  相似文献   

18.
OsNHX1 gene (Na+/H+ antiporter gene ofOryza sativa L.) was introduced into Poplar 84K withAgrobacterium tumefaciens- mediated transformation. PCR, Southern and Northern blot analysis showed thatOsNHX1 gene was incorporated successfully into the genome of Poplar 84K and expressed in these transgenic plants. Salt tolerance test showed that three lines of transgenic plants grew normally in the presence of 200 mmol/L NaCl, while the Na+ content in the leaves of the transgenic plants grown at 200 mmol/L NaCl was significantly higher than that in plants grown at 0 mmol/L NaCl. The osmotic potential in the transgenic plants with high salinity treatment was lower than that of control plants. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils.  相似文献   

19.
The plant expression vectors pBCT2 and pBT2 were constructed with the cDNA sequence (tin2) and genomic DNA sequence (tin2i) of tomato proteinase inhibitor II gene respectively. Then the two expression vectors were transferred into tobacco via the Agrobacterium tumefaciens strain LBA4404, and transgenic tobacco plants were generated. Molecular analysis and trypsin activity assay showed that both cDNA and genomic DNA were expressed properly in the transgenic plants. Insecticidal activities in these transgenic plants indicated that transgenic tobacco plants carrying tin2i sequence were more resistant to 2-instar larvae of Heliothis armigera Hubner than those carrying tin2 sequence. Therefore the intron of tin2i sequence might be a contributor to insecticidal activity of the transgenic tobacco.  相似文献   

20.
2—3 anti-fungal disease genes are coinserted with hygromycin phosphotransferase in the same vector. Two insecticidal genes and PPT acetyl transferase genes are placed in another one. The vectors are co-delivered to rice embryonic cellus tissue at a molar ratio of 1︰1 using the particle gun method. 55 independent regenerated lines have been obtained through screening for hygromycin resistance. Of these, 70% transgenic plants harbor 6—7 foreign genes. The genes on the same vectors are always co-delivered to rice plant. Northern blot analysis has indicated that the multiple foreign genes give stable expression. In the 6 transgenic plants carrying 6—7 foreign genes, multiple foreign genes tend to integrate in 1 or 2 genetic loci. Progeny segregation is consistent with Mendel’s 3︰1 segregation law. 8 homozygous R1 transgenic plants harboring 2—3 anti-fungal and 2 insecticidal genes are selected from large number of transgenic progeny screening for hygromycin and Basta resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号