首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
It is increasingly apparent that the identification of true genetic associations in common multifactorial disease will require studies comprising thousands rather than the hundreds of individuals employed to date. Using 2,873 families, we were unable to confirm a recently published association of the interleukin 12B gene in 422 type I diabetic families. These results emphasize the need for large datasets, small P values and independent replication if results are to be reliable.  相似文献   

3.
L Kruglyak 《Nature genetics》1999,22(2):139-144
Recently, attention has focused on the use of whole-genome linkage disequilibrium (LD) studies to map common disease genes. Such studies would employ a dense map of single nucleotide polymorphisms (SNPs) to detect association between a marker and disease. Construction of SNP maps is currently underway. An essential issue yet to be settled is the required marker density of such maps. Here, I use population simulations to estimate the extent of LD surrounding common gene variants in the general human population as well as in isolated populations. Two main conclusions emerge from these investigations. First, a useful level of LD is unlikely to extend beyond an average distance of roughly 3 kb in the general population, which implies that approximately 500,000 SNPs will be required for whole-genome studies. Second, the extent of LD is similar in isolated populations unless the founding bottleneck is very narrow or the frequency of the variant is low (<5%).  相似文献   

4.
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy in humans, characterized electrophysiologically by decreased nerve conduction velocities (NCVs). CMT1A is associated with a large submicroscopic DNA duplication in proximal 17p. In this report we demonstrate that a patient with a cytogenetically visible duplication, dup(17)(p11.2p12), has decreased NCV. Molecular analysis demonstrated this patient was duplicated for all the DNA markers duplicated in CMT1A as well as markers both proximal and distal to the CMT1A duplication. These data support the hypothesis that the CMT1A phenotype can result from a gene dosage effect.  相似文献   

5.
A common polymorphism acts as an intragenic modifier of mutant p53 behaviour   总被引:24,自引:0,他引:24  
The p73 protein, a homologue of the tumour-suppressor protein p53, can activate p53-responsive promoters and induce apoptosis in p53-deficient cells. Here we report that some tumour-derived p53 mutants can bind to and inactivate p73. The binding of such mutants is influenced by whether TP53 (encoding p53) codon 72, by virtue of a common polymorphism in the human population, encodes Arg or Pro. The ability of mutant p53 to bind p73, neutralize p73-induced apoptosis and transform cells in cooperation with EJ-Ras was enhanced when codon 72 encoded Arg. We found that the Arg-containing allele was preferentially mutated and retained in squamous cell tumours arising in Arg/Pro germline heterozygotes. Thus, inactivation of p53 family members may contribute to the biological properties of a subset of p53 mutants, and a polymorphic residue within p53 affects mutant behaviour.  相似文献   

6.
Submicroscopic genomic copy number changes have been identified only recently as an important cause of mental retardation. We describe the detection of three interstitial, overlapping 17q21.31 microdeletions in a cohort of 1,200 mentally retarded individuals associated with a clearly recognizable clinical phenotype of mental retardation, hypotonia and a characteristic face. The deletions encompass the MAPT and CRHR1 genes and are associated with a common inversion polymorphism.  相似文献   

7.
We describe here eleven different mutations in SPINK5, encoding the serine protease inhibitor LEKTI, in 13 families with Netherton syndrome (NS, MIM256500). Most of these mutations predict premature termination codons. These results disclose a critical role of SPINK5 in epidermal barrier function and immunity, and suggest a new pathway for high serum IgE levels and atopic manifestations.  相似文献   

8.
Haplotype tagging for the identification of common disease genes   总被引:61,自引:0,他引:61  
Genome-wide linkage disequilibrium (LD) mapping of common disease genes could be more powerful than linkage analysis if the appropriate density of polymorphic markers were known and if the genotyping effort and cost of producing such an LD map could be reduced. Although different metrics that measure the extent of LD have been evaluated, even the most recent studies have not placed significant emphasis on the most informative and cost-effective method of LD mapping-that based on haplotypes. We have scanned 135 kb of DNA from nine genes, genotyped 122 single-nucleotide polymorphisms (SNPs; approximately 184,000 genotypes) and determined the common haplotypes in a minimum of 384 European individuals for each gene. Here we show how knowledge of the common haplotypes and the SNPs that tag them can be used to (i) explain the often complex patterns of LD between adjacent markers, (ii) reduce genotyping significantly (in this case from 122 to 34 SNPs), (iii) scan the common variation of a gene sensitively and comprehensively and (iv) provide key fine-mapping data within regions of strong LD. Our results also indicate that, at least for the genes studied here, the current version of dbSNP would have been of limited utility for LD mapping because many common haplotypes could not be defined. A directed re-sequencing effort of the approximately 10% of the genome in or near genes in the major ethnic groups would aid the systematic evaluation of the common variant model of common disease.  相似文献   

9.
Using variants from the 1000 Genomes Project pilot European CEU dataset and data from additional resequencing studies, we densely genotyped 183 non-HLA risk loci previously associated with immune-mediated diseases in 12,041 individuals with celiac disease (cases) and 12,228 controls. We identified 13 new celiac disease risk loci reaching genome-wide significance, bringing the number of known loci (including the HLA locus) to 40. We found multiple independent association signals at over one-third of these loci, a finding that is attributable to a combination of common, low-frequency and rare genetic variants. Compared to previously available data such as those from HapMap3, our dense genotyping in a large sample collection provided a higher resolution of the pattern of linkage disequilibrium and suggested localization of many signals to finer scale regions. In particular, 29 of the 54 fine-mapped signals seemed to be localized to single genes and, in some instances, to gene regulatory elements. Altogether, we define the complex genetic architecture of the risk regions of and refine the risk signals for celiac disease, providing the next step toward uncovering the causal mechanisms of the disease.  相似文献   

10.
Association studies offer a potentially powerful approach to identify genetic variants that influence susceptibility to common disease, but are plagued by the impression that they are not consistently reproducible. In principle, the inconsistency may be due to false positive studies, false negative studies or true variability in association among different populations. The critical question is whether false positives overwhelmingly explain the inconsistency. We analyzed 301 published studies covering 25 different reported associations. There was a large excess of studies replicating the first positive reports, inconsistent with the hypothesis of no true positive associations (P < 10(-14)). This excess of replications could not be reasonably explained by publication bias and was concentrated among 11 of the 25 associations. For 8 of these 11 associations, pooled analysis of follow-up studies yielded statistically significant replication of the first report, with modest estimated genetic effects. Thus, a sizable fraction (but under half) of reported associations have strong evidence of replication; for these, false negative, underpowered studies probably contribute to inconsistent replication. We conclude that there are probably many common variants in the human genome with modest but real effects on common disease risk, and that studies using large samples will convincingly identify such variants.  相似文献   

11.
12.
Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.  相似文献   

13.
Genetic association studies are viewed as problematic and plagued by irreproducibility. Many associations have been reported for type 2 diabetes, but none have been confirmed in multiple samples and with comprehensive controls. We evaluated 16 published genetic associations to type 2 diabetes and related sub-phenotypes using a family-based design to control for population stratification, and replication samples to increase power. We were able to confirm only one association, that of the common Pro12Ala polymorphism in peroxisome proliferator-activated receptor-gamma(PPARgamma) with type 2 diabetes. By analysing over 3,000 individuals, we found a modest (1.25-fold) but significant (P=0.002) increase in diabetes risk associated with the more common proline allele (85% frequency). Moreover, our results resolve a controversy about common variation in PPARgamma. An initial study found a threefold effect, but four of five subsequent publications failed to confirm the association. All six studies are consistent with the odds ratio we describe. The data implicate inherited variation in PPARgamma in the pathogenesis of type 2 diabetes. Because the risk allele occurs at such high frequency, its modest effect translates into a large population attributable risk-influencing as much as 25% of type 2 diabetes in the general population.  相似文献   

14.
Kawasaki disease is a pediatric systemic vasculitis of unknown etiology for which a genetic influence is suspected. We identified a functional SNP (itpkc_3) in the inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) gene on chromosome 19q13.2 that is significantly associated with Kawasaki disease susceptibility and also with an increased risk of coronary artery lesions in both Japanese and US children. Transfection experiments showed that the C allele of itpkc_3 reduces splicing efficiency of the ITPKC mRNA. ITPKC acts as a negative regulator of T-cell activation through the Ca2+/NFAT signaling pathway, and the C allele may contribute to immune hyper-reactivity in Kawasaki disease. This finding provides new insights into the mechanisms of immune activation in Kawasaki disease and emphasizes the importance of activated T cells in the pathogenesis of this vasculitis.  相似文献   

15.
16.
17.
Williams-Beuren syndrome (WBS) is most often caused by hemizygous deletion of a 1.5-Mb interval encompassing at least 17 genes at 7q11.23 (refs. 1,2). As with many other haploinsufficiency diseases, the mechanism underlying the WBS deletion is thought to be unequal meiotic recombination, probably mediated by the highly homologous DNA that flanks the commonly deleted region. Here, we report the use of interphase fluorescence in situ hybridization (FISH) and pulsed-field gel electrophoresis (PFGE) to identify a genomic polymorphism in families with WBS, consisting of an inversion of the WBS region. We have observed that the inversion is hemizygous in 3 of 11 (27%) atypical affected individuals who show a subset of the WBS phenotypic spectrum but do not carry the typical WBS microdeletion. Two of these individuals also have a parent who carries the inversion. In addition, in 4 of 12 (33%) families with a proband carrying the WBS deletion, we observed the inversion exclusively in the parent transmitting the disease-related chromosome. These results suggest the presence of a newly identified genomic variant within the population that may be associated with the disease. It may result in predisposition to primarily WBS-causing microdeletions, but may also cause translocations and inversions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号