共查询到20条相似文献,搜索用时 78 毫秒
1.
针对批量流水线调度问题,提出了一种改进的人工蜂群算法优化最大完成时间。该算法用NEH方法产生初始解,利用混沌的遍历性生成新的邻域解。为了跳出局部最优,使用最优解插入扰动替换一些连续若干步不能改进的解以提高算法的全局搜索能力,仿真实验结果验证了算法的可行性。 相似文献
2.
针对求解多目标优化问题(MOP:Multi-Objective Problem)时,人工蜂群算法(ABC:Artificial Bee Colony)存在难以收敛和候选解多样性难以保持的问题,对其各部分求解策略进行了改进。基于ABC算法框架,设计了一种基于自适应求解策略的多目标ABC算法,并在机电执行器设计的实际应用工程设计问题中,将所提出的改进多目标ABC与其他典型的群智能算法进行优化性能比较。通过实验验证可知,所提出的MOABC/DD(Multi-Objective Artificial Bee Colony Based on Dominance and Decomposition)算法在求解机电执行器设计问题基准测试用例时,与典型算法相比,具有较好的问题求解精度。并且MOABC/DD的实验结果较为稳定,从而证明了MOABC/DD具有较高的求解稳定性和健壮性。 相似文献
3.
针对人工蜂群(ABC)算法局部搜索能力弱的问题,提出一种平衡搜索的人工蜂群算法(BSABC).首先,采用一种基于对数函数的的适应度评价方式,用于减小选择压力,在一定程度上避免陷入局部最优.其次,受微分进化算法的启发,提出一种新的搜索策略,通过当前最优个体指导进化方向,使候选解的产生倾向于当前最优解,同时避免陷入局部最优.对6个经典测试函数进行仿真实验,并与经典的改进人工蜂群算法对比测试,结果表明:所提出的算法在收敛速度和收敛精度上都有显著的提升. 相似文献
4.
针对含有随机加工时间的阻塞批量流水线调度问题,利用蒙特卡洛采样方法,将不确定加工时间的阻塞批量流水线调度问题转化为确定加工时间的阻塞批量调度问题。采用改进的人工蜂群算法,对上述转化后的调度问题进行求解。算法中加入了和声搜索和基于插入操作的局部搜索算子,以改进全局探索和局部开发能力,并将改进的算法应用到阻塞批量调度的24个算例中。仿真实验结果表明,改进的人工蜂群算法能够降低调度中的不确定因素带来的影响,产生高质量的解。 相似文献
5.
人工蜂群算法是一种模拟蜜蜂采蜜的群智能优化算法。针对传统的人工蜂群算法收敛速度慢,容易陷于局部最优进行了改进,引入了扰动控制频率来指导引领峰搜寻蜜源,增强算法局部搜索能力。提出了自适应动态变异算子,提高了算法收敛速度。融合了Boltzmann策略选择机制,动态调整了算法的搜索范围,增强了种群的多样性。算法成功地应用到求解动物饲料配比问题。结果显示,在运行效率、最优解质量、稳定性均优于被比较的其它算法。 相似文献
6.
城市化的快速发展使得天然气的需求量不断增多,考虑到天然气管网在今后的运输压力会越来越大,所以相关的经济效益和管网利用率需要更加地趋于合理化。文章以管线铺设经济最优为目标函数,将人工蜂群算法应用于城镇燃气管网的优化布局中,并且在基本人工蜂群算法的寻优过程中提出了新的邻域搜索策略,在算法的贪婪选择阶段加入了判别函数,使算法原本存在的缺陷得到了改进。通过仿真结果发现,文章中提出的改进方案能够得到较好的优化结果,在实际天然气输配管网铺设中具有一定的参考价值。 相似文献
7.
针对分布式柔性作业车间调度问题,提出一种改进遗传蜂群算法求解方案。算法采用基于机器编码的编码方案,根据编码特点和分布式柔性作业车间的特点,设计了一种基于编码相似度的交叉操作,可以避免在交叉过程中产生非法解,提高算法的运行效率,并通过在不同的交叉操作后,以不同概率进行两种变异操作的方式改进了雇佣蜂时期的搜索操作,改善了算法的迭代速度;采用排序选择策略替代原来跟随蜂时期的选择策略;改进侦查蜂的蜜源抛弃机制,通过对比已获得的全局最优解,对达到搜索上限的蜜源进行部分抛弃,防止破坏优质解再次陷入随机搜索。最后,通过对比不同算法对实例求解,验证本文算法的有效性。 相似文献
8.
基于自适应搜索的人工蜂群算法 总被引:1,自引:0,他引:1
针对基本的人工蜂群算法(basic Artificial Bee Colony algorithm,ABC)收敛速度慢和容易陷于局部最优等不足,采用混沌算子和逆向学习算子相混合的初始化种群的方法,有效地改进了初始种群的多样性;在雇佣蜂和观察峰的位置更新上,提出了自适应搜索算子.改进后的算法(Improved ABC,IABC)测试了5个标准单峰或多峰函数,结果表明,IABC算法在搜索效率、最优解质量、稳定性均优于ABC算法. 相似文献
9.
为了克服风电场出力波动的不利影响,提高调度经济性,构建含常规火力发电燃料费用、风电预测误差备用费用以及风电弃风成本的多目标动态调度模型,并提出一种混沌量子粒子群算法对模型进行求解。标准测试函数的仿真结果表明本算法比对照算法具有较高的收敛精度和稳定性。对含风电场的IEEE30节点系统算例进行仿真实验,结果表明采用混沌量子粒子群算法对调度模型求解的调度费用最低。 相似文献
10.
针对传统粒子群寻优速度慢的缺点,引进了种群平均速度的定义。用平均速度表征粒子群的活跃程度,并作为粒子群惯性权重和学习因子调节的依据,加快了粒子群的寻优速度。针对粒子群容易陷入局部极值的缺点,提出将模拟退火算法引入粒子群算法,将粒子群的平行快速寻优能力和模拟退火的概率突跳特性相结合,保持了群体多样性,有效地避免了局部收敛。对2个典型测试函数的寻优问题进行仿真实验,实验结果验证了该算法的有效性。将改进的粒子群算法用于风电场风速概率分布模型的优化,与常规的统计方法相比,该方法具有更高的拟合精度。 相似文献
11.
针对人工蜂群算法存在后期收敛速度慢、局部搜索能力差和易陷入局部最优的问题,提出一种基于交叉算子的改进人工蜂群算法.该算法利用佳点集方法产生初始种群,使得初始化个体尽可能均匀地分布在搜索空间;随机选择食物源位置与当前最优食物源位置进行算术交叉操作,引导群体向全局最优解靠近,提高算法的局部搜索能力和加快收敛速度.通过5个高维标准测试函数的实验结果表明新算法的有效性. 相似文献
12.
根据免疫算法的生物学机理,提出了一种改进的免疫遗传算法.该算法将微粒群算法作为免疫算法的全局搜索策略,提高算法的全局搜索能力;利用逐步优化算法对免疫算法的控制策略进行进化操作,提高算法的局部搜索能力;利用免疫算法本身基于浓度的自我调节机制,提高群体的多样性,避免算法过早陷入局部最优解.最后给出了该算法实现的具体步骤,并将其应用于水电站的优化调度中,取得了较为满意的结果,且与动态规划、遗传算法、免疫算法和微粒群算法等比较,验证了算法的有效性和优越性. 相似文献
13.
针对人工蜂群算法在求解过程中存在收敛速度慢、易陷入局部最优解等缺点,提出了基于加强局部搜索策略的人工蜂群算法(ABC Based On Enhancing Local Search Ability,LSABC).一方面,在雇佣蜂搜索阶段,利用两种不同的搜索公式得到两组解,并将适应度最佳者作为候选解,增加解的多样性;同时... 相似文献
14.
与齐齐哈尔市公安交通警察支队交通控制中心合作开发,并以齐齐哈尔市路况为实际进行凋研,将改进的人工鱼群算法应用于交通路径诱导系统数据库优化查淘中,算法提高了最优路径查询的效率。对人工鱼群算法进行了改进,引入贝叶斯变异算子和十字交叉变异算子,避免了算法局部寻优能力差和收敛速度慢等弊端。仿真实验表明算法是正确有效性的。 相似文献
15.
免疫粒子群算法及其在水库优化调度中的应用 总被引:3,自引:0,他引:3
免疫粒子群优化算法(IA-PSO)是将免疫系统的免疫信息处理机制引入粒子群算法(PSO)中,利用其特有的浓度选择机制以及免疫接种功能的原理,改进粒子群优化算法的全局寻优能力,提高收敛速度.在分析水库优化调度的数学模型和IA-PSO算法特点的基础上,提出了基于IA-PSO算法的水库优化调度的方法,建立了数学模型,给出了具体求解步骤.经实例验证,IA-PSO得出的水库优化调度方案优于传统动态规划算法的计算结果,而且算法收敛速度快,为水库调度问题提供了一条新的有效求解途径. 相似文献
16.
针对人工鱼群算法(AFSA)存在收敛速度慢和寻优精度低等问题,本文提出了一种改进人工鱼群算法(IAFSA).该算法中的人工鱼能够根据鱼群当前状态调整自身的视野和步长来平衡局部搜索和全局搜索.此外,算法中还加入了引导行为,即人工鱼在觅食行为未发现更优的位置时,当前人工鱼向最优人工鱼移动一步.仿真结果表明,改进人工鱼群算法在收敛速度、寻优精度和克服局部极值等方面有很大优势.本文将改进鱼群算法应用时滞系统的辨识中,辨识结果表明改进算法能获取被控对象的精准数学模型,并具有较强的抗干扰能力. 相似文献
17.
基于人工免疫网络算法(aiNet)模型,借鉴禁忌搜索算法(TS)的思想,提出一种禁忌搜索与人工免疫的混合算法,即人工免疫网络算法(TS-aiNet).在算法中引入禁忌表,禁忌那些在网络迭代中亲和度连续不再增加的细胞,并通过特赦准则赦免一些被禁忌的优良状态;增加1个记忆表,用于保存成熟的记忆细胞;重新定义高斯变异方式,以保证多样化的有效搜索.利用Markov链证明算法全局收敛性,通过对多个典型系统测试函数的仿真实验定量分析该算法的性能,并与经典克隆选择算法和opt-aiNet算法进行比较研究,分析特征参数对算法性能的影响.实验结果表明,该算法在多模态搜索空间中具有更强的全局收敛性、稳定性和寻找极值点能力,能够克服早熟现象,是一种有效的全局优化搜索方法. 相似文献
18.
基于双种群粒子群优化新算法的最优潮流求解 总被引:3,自引:0,他引:3
提出一种带赌轮选择的双种群粒子群优化算法(TSPSO)求解最优潮流问题。在该算法中,对2个种群采取不同的参数设置,使得粒子在进化过程中具有不同的飞行轨迹,从而尽可能地探索解空间,增强算法的全局搜索能力;基于赌轮算法的概率选择机制使粒子可以在较好的可行解邻近范围内高强度搜索,增强了算法的局部搜索能力;采用自适应惩罚因子能有效区分最优潮流的目标函数和约束条件对种群进化的影响,使种群可以跨越不可行域到可行域进行搜索。通过IEEE30节点系统对该算法进行测试,结果表明,采用该算法可以有效求解最优潮流问题。 相似文献
19.
在建立抽水蓄能电站优化运行方式计算模型的基础上,将遗传算法与领域问题的算法相结合:选择机组运行状态作为编码变量,使机组的运行状态与二进制遗传编码具有简洁对应关系,采用符合问题本身特点的基因面式杂交算子和改造的变异算子,使遗传操作更适应问题的求解;根据领域问题的性质及算法求解承担系统基荷的机组运行方式,使问题的规模得到有效压缩,应用领域问题求解的等微增率原理计算各个体因子所对应的运行机组间最优负荷分配方案,并以此计算了个体适应值,由于在遗传编码设计,遗传操作改造,问题规律压缩以及适应值计算几个方面融合了问题所涉及的领域知识,提高了算法的计算效率和全局搜索能力,形成一种适合于求解复杂约束条件下抽水蓄能电站优化运行方式的混合遗传算法。 相似文献