首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对批量流水线调度问题,提出了一种改进的人工蜂群算法优化最大完成时间。该算法用NEH方法产生初始解,利用混沌的遍历性生成新的邻域解。为了跳出局部最优,使用最优解插入扰动替换一些连续若干步不能改进的解以提高算法的全局搜索能力,仿真实验结果验证了算法的可行性。  相似文献   

2.
针对求解多目标优化问题(MOP:Multi-Objective Problem)时,人工蜂群算法(ABC:Artificial Bee Colony)存在难以收敛和候选解多样性难以保持的问题,对其各部分求解策略进行了改进。基于ABC算法框架,设计了一种基于自适应求解策略的多目标ABC算法,并在机电执行器设计的实际应用工程设计问题中,将所提出的改进多目标ABC与其他典型的群智能算法进行优化性能比较。通过实验验证可知,所提出的MOABC/DD(Multi-Objective Artificial Bee Colony Based on Dominance and Decomposition)算法在求解机电执行器设计问题基准测试用例时,与典型算法相比,具有较好的问题求解精度。并且MOABC/DD的实验结果较为稳定,从而证明了MOABC/DD具有较高的求解稳定性和健壮性。  相似文献   

3.
针对人工蜂群(ABC)算法局部搜索能力弱的问题,提出一种平衡搜索的人工蜂群算法(BSABC).首先,采用一种基于对数函数的的适应度评价方式,用于减小选择压力,在一定程度上避免陷入局部最优.其次,受微分进化算法的启发,提出一种新的搜索策略,通过当前最优个体指导进化方向,使候选解的产生倾向于当前最优解,同时避免陷入局部最优.对6个经典测试函数进行仿真实验,并与经典的改进人工蜂群算法对比测试,结果表明:所提出的算法在收敛速度和收敛精度上都有显著的提升.  相似文献   

4.
针对含有随机加工时间的阻塞批量流水线调度问题,利用蒙特卡洛采样方法,将不确定加工时间的阻塞批量流水线调度问题转化为确定加工时间的阻塞批量调度问题。采用改进的人工蜂群算法,对上述转化后的调度问题进行求解。算法中加入了和声搜索和基于插入操作的局部搜索算子,以改进全局探索和局部开发能力,并将改进的算法应用到阻塞批量调度的24个算例中。仿真实验结果表明,改进的人工蜂群算法能够降低调度中的不确定因素带来的影响,产生高质量的解。  相似文献   

5.
鄢靖丰 《科学技术与工程》2012,12(33):8919-8923
人工蜂群算法是一种模拟蜜蜂采蜜的群智能优化算法。针对传统的人工蜂群算法收敛速度慢,容易陷于局部最优进行了改进,引入了扰动控制频率来指导引领峰搜寻蜜源,增强算法局部搜索能力。提出了自适应动态变异算子,提高了算法收敛速度。融合了Boltzmann策略选择机制,动态调整了算法的搜索范围,增强了种群的多样性。算法成功地应用到求解动物饲料配比问题。结果显示,在运行效率、最优解质量、稳定性均优于被比较的其它算法。  相似文献   

6.
爨莹  李亦珂 《科学技术与工程》2020,20(24):9943-9946
城市化的快速发展使得天然气的需求量不断增多,考虑到天然气管网在今后的运输压力会越来越大,所以相关的经济效益和管网利用率需要更加地趋于合理化。文章以管线铺设经济最优为目标函数,将人工蜂群算法应用于城镇燃气管网的优化布局中,并且在基本人工蜂群算法的寻优过程中提出了新的邻域搜索策略,在算法的贪婪选择阶段加入了判别函数,使算法原本存在的缺陷得到了改进。通过仿真结果发现,文章中提出的改进方案能够得到较好的优化结果,在实际天然气输配管网铺设中具有一定的参考价值。  相似文献   

7.
针对分布式柔性作业车间调度问题,提出一种改进遗传蜂群算法求解方案。算法采用基于机器编码的编码方案,根据编码特点和分布式柔性作业车间的特点,设计了一种基于编码相似度的交叉操作,可以避免在交叉过程中产生非法解,提高算法的运行效率,并通过在不同的交叉操作后,以不同概率进行两种变异操作的方式改进了雇佣蜂时期的搜索操作,改善了算法的迭代速度;采用排序选择策略替代原来跟随蜂时期的选择策略;改进侦查蜂的蜜源抛弃机制,通过对比已获得的全局最优解,对达到搜索上限的蜜源进行部分抛弃,防止破坏优质解再次陷入随机搜索。最后,通过对比不同算法对实例求解,验证本文算法的有效性。  相似文献   

8.
基于自适应搜索的人工蜂群算法   总被引:1,自引:0,他引:1  
针对基本的人工蜂群算法(basic Artificial Bee Colony algorithm,ABC)收敛速度慢和容易陷于局部最优等不足,采用混沌算子和逆向学习算子相混合的初始化种群的方法,有效地改进了初始种群的多样性;在雇佣蜂和观察峰的位置更新上,提出了自适应搜索算子.改进后的算法(Improved ABC,IABC)测试了5个标准单峰或多峰函数,结果表明,IABC算法在搜索效率、最优解质量、稳定性均优于ABC算法.  相似文献   

9.
为了克服风电场出力波动的不利影响,提高调度经济性,构建含常规火力发电燃料费用、风电预测误差备用费用以及风电弃风成本的多目标动态调度模型,并提出一种混沌量子粒子群算法对模型进行求解。标准测试函数的仿真结果表明本算法比对照算法具有较高的收敛精度和稳定性。对含风电场的IEEE30节点系统算例进行仿真实验,结果表明采用混沌量子粒子群算法对调度模型求解的调度费用最低。  相似文献   

10.
针对传统粒子群寻优速度慢的缺点,引进了种群平均速度的定义。用平均速度表征粒子群的活跃程度,并作为粒子群惯性权重和学习因子调节的依据,加快了粒子群的寻优速度。针对粒子群容易陷入局部极值的缺点,提出将模拟退火算法引入粒子群算法,将粒子群的平行快速寻优能力和模拟退火的概率突跳特性相结合,保持了群体多样性,有效地避免了局部收敛。对2个典型测试函数的寻优问题进行仿真实验,实验结果验证了该算法的有效性。将改进的粒子群算法用于风电场风速概率分布模型的优化,与常规的统计方法相比,该方法具有更高的拟合精度。  相似文献   

11.
一种求解SAT问题的人工蜂群算法   总被引:2,自引:0,他引:2  
针对SAT问题,提出一种求解该问题的离散人工蜂群算法——ABCSAT算法,建立了相应的优化算法模型,解决了问题编码和转化、适应度函数、蜜蜂觅食策略、离散操作等关键问题.不同于处理连续优化问题,ABCSAT将适应度函数定义为当前不可满足子句数.根据问题的特点设计了多种觅食策略,并利用各子句和变量之间约束关系的启发式信息对各阶段的候选解进行离散操作.最后在标准SATLIB测试集上对提出的算法进行了测试并与相关算法进行了比较,结果验证了ABCSAT算法在中小规模SAT问题上的有效性,表明算法能更加有效地解决该问题.  相似文献   

12.
基于粒子群和人工蜂群算法的混合优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
王志刚 《科学技术与工程》2012,12(20):4921-4925,4934
提出一种基于粒子群(PSO)和人工蜂群算法(ABC)相结合的新型混合优化算法—PSOABC。该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由人工蜂群算法进化而来,并且在人工蜂群算法中按轮盘赌的方式选择个体进化所需的随机个体。此外,算法采用一种信息分享机制,使两个种群中的个体可以实现协同进化。对4个基准函数进行仿真实验并与ABC进行比较,表明本文提出的算法能有效地改善寻优性能,增强摆脱局部极值的能力。  相似文献   

13.
改进的蜂群LS-SVM故障预测   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高基于最小二乘支持向量机的故障预测精准度,提出了AFS-ABC算法,用于组合优化LS-SVM的规则化参数C和宽度参数σ.该算法将鱼群算法AFS简化模型中人工鱼的寻优更新方法引入到蜂群算法中,以互补优势、互克不足.通过100维Ackley函数验证了该算法在优化精度和搜索速度上较AFS算法与ABC算法的优越性,并以某航空电子系统电源模块记录电压数据序列的前40个作为LS-SVM模型的训练集,后15个作为测试集,利用MAT-LAB的LS-SVM工具箱进行状态预测仿真.结果表明,AFS-ABC算法较好地改善了LS-SVM的预测精度,同时解决了局部极值和寻优结果精度低的问题.  相似文献   

14.
为了解决约束优化问题,采用一种基于群智能算法优化的多约束问题优化方法。首先构造同时计及约束条件和优化适应度的目标函数,然后分别利用粒子群算法和人工蜂群算法优化其函数,从而获得约束条件下的优化解。仿真结果表明,该多约束问题优化方法是可行性的,人工蜂群算法比粒子群算法具有更好的搜索和收敛能力。  相似文献   

15.
人工蜂群算法中蜜蜂在开采蜜源时,随机选择维度,随意决定开采方向和步伐来搜索新蜜源,没有利用以往的搜索经验,导致其收敛速度过慢.对此提出了基于行动轨迹的人工蜂群算法,记录跟随蜜蜂开采蜜源的行动轨迹,并以此为经验引导下一次开采,以提高人工蜂群算法的开采能力.通过对优化函数寻优测试,实验结果表明该算法不仅加快收敛速度,提高寻优能力,还具有良好的鲁棒性和稳定性.  相似文献   

16.
为促进人工蜂群算法理论和应用的发展, 在分析人工蜂群算法的基本原理基础上, 针对算法的不足, 全面地归纳了国内外学者对算法的改进研究, 对算法的蜜源初始化、更新策略的改进、调整策略的改进、适应度函数的选择以及与其他算法的融合进行综述, 提出了更有效的改进策略。同时从多方面综述了人工蜂群算法的应用, 并对人工蜂群算法的发展方向进行了总结和展望。  相似文献   

17.
提出一种基于自适应遗传算法的水库群优化调度问题的求解方法,并对其性能进行了分析。结果表明,该方法可以随个体适应度的大小及群体的分散程度自动调整遗传控制参数,较好地克服了标准遗传算法由于采用固定遗传控制参数带来的若干问题,能够在保持群体多样性的同时,加快收敛速度,提高遗传算法的全局寻优能力,为高精度水库群优化调度提供了一个新的途径。  相似文献   

18.
针对粒子群算法和蜂群算法在寻优中存在的一些早熟和收敛速精度不高等问题,论文分别时粒子算法和蜂群算法的更新策略以及更新公式进行了改进,利用改进的粒子群算法和改进的蜂群算法同时对一个粒子位置进行部分算术更新的方法,提出了一种新混合的优化算法.并将其在12个多极值基准函数进行全局最优化测试,实验结果表明,笔者提出的混合优化算法收敛的速度和收敛精度大大提高了,其性大大优于改进的粒子群算法(CLPSO算法)和人工蜂群算法,对于高、低维复杂函数的优化均适用.  相似文献   

19.
提出一种新的混合智能算法解决含阀点效应和系统约束的含风电场的电力系统经济调度问题,将蜂群中的觅食行为与聚群行为引入改进的粒子群,提出改进粒子群一蜂群混合智能算法.在算法上进行优化,大大地提高搜索的能力,从而使结果更优.通过引入交叉策略,对那些速度保持不变的点,重新赋值.以一定的比例选拔最优点,其中选拔出的最优点,不止一个.同时精英策略的采用,有利于加强全局寻优,跳出局部最优,从而使算法得到很大的改善.最后对一个10机系统的算例进行求解,通过与改进的粒子群算法、蜂群算法进行比较,验证了改进的粒子群一蜂群混合智能优化算法在解决含风申.场的申力系统终济调度问题中的有效性与优撼性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号