首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
讨论线性微分方程系(1)ax/dt=A(t)x A(t)对t≥0连续有界。对于实数λ,如果dx/dt=(A(t)-λE)x不具有指数型二分法,就称λ是系统(1)的谱点。其中,E为n阶单位方阵,n为向  相似文献   

2.
Cauchy不等式和Kantorovich不等式的推广   总被引:3,自引:0,他引:3  
设A为n×n正定Hermite阵,x为n维列向量,λ1≥λ 2≥…≥λn>0为A的特征值,得到了Cauchy不等式及Kantorovich不等式的如下推广形式:(x*A α1+α2+...+αk/k/x)k≤x*Aα1x...x*Aαkx,其中α1,α2,...αk为任意实数.(x*Aαx)β(x*A-βx)α≤/ααββ/(α+β)α+β/(λ1α+β-λnα+β)α+β/(λ1λn)αβ(λ1α-λnα)α(λ1β-λnβ)β/(x*x)α+β.其中α,β为任正数.  相似文献   

3.
给出当f1,…,fn为非线性多项式时,系统dxi(t)/dt=fi(x1(t),…,xn(t))不存在多项式首次积分的1个充分条件:矩阵A的特征根λ1,…,λn不满足任何非共振条件k1λ1 … knλn=0,k1,…,kn∈Z ,n∑i=1ki>0.  相似文献   

4.
正则Fuzzy数     
<正> 定义1 设a∈F(R)(R为实数全体),如果对Aλ∈(0,1),a_λ={x|μ_a(x)≥λ}是一闭区间,且a_1={x|μ_a(x)=1}是单点集,则称a为正则Fuzzy数。 定义2 设a是一正则Fuzzy数, (1)如果suppa={x|μ_a(x)>0}R~+,则称a为正的正则Fuzzy数。 (2)如果suppa={x|μ_a(x)>0}R~-,侧称a为负的正则Fuzzy数。 本文规定,对任一正则Fuzzy数a,都有μ_a(a)=1。  相似文献   

5.
设λ1,λ2,...,λn(可以相同)为实矩阵A的所有特征值,记为σ(A)=(λ1,λ2,...,λn).n阶符号模式矩阵S=(sij)是指元素取自{ ,-,0}的矩阵,S的定性矩阵类是指集合Q(S)={A=(aij)∈M\{n\}(R):对所有的i和j,sign(aij)=sij},记σ(S)={σ(A):A∈Q(S)}.设S为n阶符号模式矩阵,λ1,λ2,…,λn为n个任意复数,若λ1,λ2,…,λn中的虚数都与其共轭复数成对出现时,便存在A∈Q(S),使得σ(A)=(λ1,λ2,…,λn),则称S为谱任意模式.在本文中,我们得到两个谱任意模式.  相似文献   

6.
本文讨论了4t(t≥2)阶规范化HADAMARD矩阵与(ν,κ,λ)组态等价定理的完备证明及(ν,κ,λ)差集与2~(?)(n≥1)阶HADAMARD方阵的一种算法.  相似文献   

7.
应用有限维实数组,即A1={[λ1]=(λ1,λ2,…,λn),λi∈R,i=1,2,…,n},n↑∑↑i=1λi=1和A↓xi∈R,i=1,2,…,n满足Jensen不等式的凸函数f:f(n↑∑↑i=1λixi)≤n↑∑↑i=1λif(xi),刻画了线性函数与仿射函数。  相似文献   

8.
设A为n阶的Hermite矩阵,β是复数域上的一个n维向量,a是一个实数,B=Aββ-′a称为A的镶边矩阵.设A的特征根为λ1≥λ2≥…≥λn,B的特征根为μ1≥μ2≥…≥μn 1,文献中王松桂等人证明了A与B的特征根满足如下关系:μ1≥λ1≥μ2≥…≥λn-1≥μn≥λn≥μn 1.该文利用实数域上连续函数的性质给出了该结论的一个新的证明.  相似文献   

9.
若给定任意一个n阶首1复系数多项式f(λ),都存在一个复矩阵B∈Q(A),使得的特征多项式为f(λ),则称n×n复符号模式矩阵A是谱任意的.如果A是一个谱任意复符号模式矩阵且A的任意真子模式都不是谱任意的,那么A是一个极小谱任意复符号模式矩阵.本文扩展了N-J方法证明了一个的复符号模式矩阵是极小谱任意的n≥4.  相似文献   

10.
Corfmat和Morse给出了分散系统存在输出反馈使闭环系统可控的充要条件。对广义分散控制系统Ex(t)=Ax(t)+Bu(t)+Dv(t),我们得到了存在状态反馈v(t)=Fx(t)使广义系统Ex(t)=(A+DF)x(t)+Bu(t)为R—可控的充要条件。引理1 设{A,E}是n阶正则对,则必存在可逆阵P、Q∈C~(n×n),使PE我Q=diag{I~(n1),N},PAQ=diag{A,I~(n2)},其中存在尽可能小的正整数λ,使N~λ=0,n_1+n_2=n.记B、D分别是PB、PD的后n_1、n_2行阵。  相似文献   

11.
§1.所谓一运算于A的谱是指(λI—A)~(-1)不是线性运算的λ的集合,(λ一般是复数)而A是由巴那赫空间E→E的运算,我们讨论一下更一般的谱,即(A—λB)x=0,有非零的解时,称X为A相对于B的特微向量,若A—λB有线性逆运算,则称λ为正则值。反之A—λB的线性逆运算不存在时,λ叫谱点。 定理I.λ为A相对于B的正则值的充要条件是存在一正数C>0,使对一切x∈E,使  相似文献   

12.
本文研究概率空间(Ω,F,μ)上的一维平稳遍历Dirac算子H_ω,定义了算子H_ω在实数λ处的旋转数a(A),并证明了a(A)的单调上升点恰是H_ω的谱点.  相似文献   

13.
本文通过对算子方程UA=A*U的讨论,给出了J.B.Conway于[1]中提出的自对偶次正常算子的一个内蕴性描述. 定义设H是可析的Hilbert空间,U是日上的酉算子,如果H上的算子A满足方程UA=A*U,则称A为U自共轭算子(U self adjoint,本文简记为U s.a.). U s.a.算子具有如下初等性质: 性质1 A是U s.a.算子,则σ(A)与σ_(?)(A)关于实数轴对称.当λ∈σ_(?)(A)时,A-λ与A-λ的Fredholm指标互为相反数,特别当λ为实数时,ind(A-λ)=0. 证显然,由方程UA=A*U,可知σ(A),σ.(A)是关于实数轴对称的.又根据U  相似文献   

14.
本文按照张恭庆教授指出的途径,用复分析方法证明了在复Hilbert空间上自共轭线性算子的谱分解定理。我们首先用Cauchy公式证明若R_λ是自共轭算子T的豫解式,则(R_λx,x)可以用Stieltjes积分表示 (R_λx,x)=integral from n=-∞ to ∞ dρ(t)/(λ-t) 这里谱函数ρ(t)由R_λ唯一确定。由此利用双线性泛函(R_λx,y)导出谱分解定理以及谱族{E(t)}的表示式 E(t)=(?)1/2πi integral from n=-∞ to (1 δ)((R_(s-iε)-R_(s iε))ds  相似文献   

15.
A-G-H不等式的优化推广及其应用   总被引:2,自引:0,他引:2  
借助于被称为降维法的新方法,建立了如下不等式:设ai>0,i=1,…,n,n≥2,A(a)1/n,H(a)=1-1-1ai,G(a)=∏n,则当且仅当实数λ≤1ai=1n∑nn时有不等式:n∑ni=1i=1i=1[H(a)]1-λ·[A(a)]λ≤G(a).作为应用,获得了一个几何不等式及一个有趣的矩阵不等式,并且推广了Carleman不等式.  相似文献   

16.
若X={X(t)=,t=0,±1,±2,…}为n維平稳序列。則它有譜表示 X(t)=integral from n=-π to π(θ~(iλt)dζ_X(λ)),其中ζ_X(λ)=为n维正交增量过程,亦称为序列X的随机谱函数,它满足  相似文献   

17.
Navier—Stokes方程的非退化转向点的谱Galerkin逼近   总被引:3,自引:1,他引:2  
利用非退化转向点的扩充系统,证明了如下结论:设(λ0,u0)是Navier-Stokes方程的非退化转向点,则存在正整数m1,当m大于m1时,在(λ0,u0)的某个领域内,谱Galerkin逼近方程存在惟一解,且为谱Galerkin逼近方程的非退化转向点,并给出了L^2范数和H^1范数下的误差估计。  相似文献   

18.
设X是实数域或复数域F上维数大于1的Banach空间,Ф:B(X)→B(X)是一个可加映射。证明了如果存在正整数m,n使得(m+n)Ф([A,B])=m[Ф(A),B]+n[A,Ф(B)]对任意A,B∈B(X)且AB=P(其中P∈B(X)是一个固定的非平凡幂等元)成立,则存在λ∈F及在AB=P的换位子上为零的可加映射h:B(X)→F使得对任意A∈B(X),有Ф(A)=λA+h(A)I.  相似文献   

19.
设A为n阶符号模式矩阵.若给定任意一个n次首一实系数多项式f(λ),都存在实矩阵B∈Q(A),使得B的特征多项式为f(λ),则称A为谱任意符号模式.如果我们把谱任意模式A的任意一个非零元用零代替之后所得到的符号模式不是谱任意模式的,那么这个谱任意符号模式为极小谱任意符号模式.文章给出了一类n≥7的极小谱任意符号模式.  相似文献   

20.
定义了正实数组a的t次二重幂平均M[t]m,n(a;α;λ),获得了使不等式M[r]m,n(a;α;λ)≤(≥)Mn[θ](a)成立的机器可实现的充要条件和充分条件,借助于Mathematica数学软件给出了一些算例.这里,Mn[θ](a)为正实数组a的θ次幂平均,m,n≥2,min{α}<θ0,采用的方法是降维法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号