首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin 7 (IL-7) and its receptor, formed by IL-7Rα (encoded by IL7R) and γc, are essential for normal T-cell development and homeostasis. Here we show that IL7R is an oncogene mutated in T-cell acute lymphoblastic leukemia (T-ALL). We find that 9% of individuals with T-ALL have somatic gain-of-function IL7R exon 6 mutations. In most cases, these IL7R mutations introduce an unpaired cysteine in the extracellular juxtamembrane-transmembrane region and promote de novo formation of intermolecular disulfide bonds between mutant IL-7Rα subunits, thereby driving constitutive signaling via JAK1 and independently of IL-7, γc or JAK3. IL7R mutations induce a gene expression profile partially resembling that provoked by IL-7 and are enriched in the T-ALL subgroup comprising TLX3 rearranged and HOXA deregulated cases. Notably, IL7R mutations promote cell transformation and tumor formation. Overall, our findings indicate that IL7R mutational activation is involved in human T-cell leukemogenesis, paving the way for therapeutic targeting of IL-7R-mediated signaling in T-ALL.  相似文献   

2.
3.
Although five-year survival rates for childhood acute lymphoblastic leukemia (ALL) are now over 80% in most industrialized countries, not all children have benefited equally from this progress. Ethnic differences in survival after childhood ALL have been reported in many clinical studies, with poorer survival observed among African Americans or those with Hispanic ethnicity when compared with European Americans or Asians. The causes of ethnic differences remain uncertain, although both genetic and non-genetic factors are likely important. Interrogating genome-wide germline SNP genotypes in an unselected large cohort of children with ALL, we observed that the component of genomic variation that co-segregated with Native American ancestry was associated with risk of relapse (P = 0.0029) even after adjusting for known prognostic factors (P = 0.017). Ancestry-related differences in relapse risk were abrogated by the addition of a single extra phase of chemotherapy, indicating that modifications to therapy can mitigate the ancestry-related risk of relapse.  相似文献   

4.
We identified a duplication of the MYB oncogene in 8.4% of individuals with T cell acute lymphoblastic leukemia (T-ALL) and in five T-ALL cell lines. The duplication is associated with a threefold increase in MYB expression, and knockdown of MYB expression initiates T cell differentiation. Our results identify duplication of MYB as an oncogenic event and suggest that MYB could be a therapeutic target in human T-ALL.  相似文献   

5.
6.
Yan XJ  Xu J  Gu ZH  Pan CM  Lu G  Shen Y  Shi JY  Zhu YM  Tang L  Zhang XW  Liang WX  Mi JQ  Song HD  Li KQ  Chen Z  Chen SJ 《Nature genetics》2011,43(4):309-315
Abnormal epigenetic regulation has been implicated in oncogenesis. We report here the identification of somatic mutations by exome sequencing in acute monocytic leukemia, the M5 subtype of acute myeloid leukemia (AML-M5). We discovered mutations in DNMT3A (encoding DNA methyltransferase 3A) in 23 of 112 (20.5%) cases. The DNMT3A mutants showed reduced enzymatic activity or aberrant affinity to histone H3 in vitro. Notably, there were alterations of DNA methylation patterns and/or gene expression profiles (such as HOXB genes) in samples with DNMT3A mutations as compared with those without such changes. Leukemias with DNMT3A mutations constituted a group of poor prognosis with elderly disease onset and of promonocytic as well as monocytic predominance among AML-M5 individuals. Screening other leukemia subtypes showed Arg882 alterations in 13.6% of acute myelomonocytic leukemia (AML-M4) cases. Our work suggests a contribution of aberrant DNA methyltransferase activity to the pathogenesis of acute monocytic leukemia and provides a useful new biomarker for relevant cases.  相似文献   

7.
Shah MY  Licht JD 《Nature genetics》2011,43(4):289-290
New studies reveal that 20% of individuals with acute myeloid leukemia harbor somatic mutations in DNMT3A (encoding DNA methyltransferase 3A). Although these leukemias have some gene expression and DNA methylation changes, a direct link between mutant DNMT3A, epigenetic changes and pathogenesis remains to be established.  相似文献   

8.
9.
The fundamental aim of genetics is to understand how an organism's phenotype is determined by its genotype, and implicit in this is predicting how changes in DNA sequence alter phenotypes. A single network covering all the genes of an organism might guide such predictions down to the level of individual cells and tissues. To validate this approach, we computationally generated a network covering most C. elegans genes and tested its predictive capacity. Connectivity within this network predicts essentiality, identifying this relationship as an evolutionarily conserved biological principle. Critically, the network makes tissue-specific predictions-we accurately identify genes for most systematically assayed loss-of-function phenotypes, which span diverse cellular and developmental processes. Using the network, we identify 16 genes whose inactivation suppresses defects in the retinoblastoma tumor suppressor pathway, and we successfully predict that the dystrophin complex modulates EGF signaling. We conclude that an analogous network for human genes might be similarly predictive and thus facilitate identification of disease genes and rational therapeutic targets.  相似文献   

10.
After V(D)J-mediated translocations, signal joints are retained on one of the derivative chromosomes. We report here that such signal joints are highly reactive and constitute unstable genomic elements with potential oncogenic properties.  相似文献   

11.
12.
A therapeutic strategy for treating cancer is to target and eradicate cancer stem cells (CSCs) without harming their normal stem cell counterparts. The success of this approach relies on the identification of molecular pathways that selectively regulate CSC function. Using BCR-ABL-induced chronic myeloid leukemia (CML) as a disease model for CSCs, we show that BCR-ABL downregulates the Blk gene (encoding B-lymphoid kinase) through c-Myc in leukemic stem cells (LSCs) in CML mice and that Blk functions as a tumor suppressor in LSCs but does not affect normal hematopoietic stem cells (HSCs) or hematopoiesis. Blk suppresses LSC function through a pathway involving an upstream regulator, Pax5, and a downstream effector, p27. Inhibition of this Blk pathway accelerates CML development, whereas increased activity of the Blk pathway delays CML development. Blk also suppresses the proliferation of human CML stem cells. Our results show the feasibility of selectively targeting LSCs, an approach that should be applicable to other cancers.  相似文献   

13.
Hallervorden-Spatz syndrome (HSS) is an autosomal recessive neurodegenerative disorder associated with iron accumulation in the brain. Clinical features include extrapyramidal dysfunction, onset in childhood, and a relentlessly progressive course. Histologic study reveals iron deposits in the basal ganglia. In this respect, HSS may serve as a model for complex neurodegenerative diseases, such as Parkinson disease, Alzheimer disease, Huntington disease and human immunodeficiency virus (HIV) encephalopathy, in which pathologic accumulation of iron in the brain is also observed. Thus, understanding the biochemical defect in HSS may provide key insights into the regulation of iron metabolism and its perturbation in this and other neurodegenerative diseases. Here we show that HSS is caused by a defect in a novel pantothenate kinase gene and propose a mechanism for oxidative stress in the pathophysiology of the disease.  相似文献   

14.
We have carried out automated extraction of explicit and implicit biomedical knowledge from publicly available gene and text databases to create a gene-to-gene co-citation network for 13,712 named human genes by automated analysis of titles and abstracts in over 10 million MEDLINE records. The associations between genes have been annotated by linking genes to terms from the medical subject heading (MeSH) index and terms from the gene ontology (GO) database. The extracted database and accompanying web tools for gene-expression analysis have collectively been named 'PubGene'. We validated the extracted networks by three large-scale experiments showing that co-occurrence reflects biologically meaningful relationships, thus providing an approach to extract and structure known biology. We validated the applicability of the tools by analyzing two publicly available microarray data sets.  相似文献   

15.
Phosphodiesterases (PDEs) regulate cyclic nucleotide levels. Increased cyclic AMP (cAMP) signaling has been associated with PRKAR1A or GNAS mutations and leads to adrenocortical tumors and Cushing syndrome. We investigated the genetic source of Cushing syndrome in individuals with adrenocortical hyperplasia that was not caused by known defects. We performed genome-wide SNP genotyping, including the adrenocortical tumor DNA. The region with the highest probability to harbor a susceptibility gene by loss of heterozygosity (LOH) and other analyses was 2q31-2q35. We identified mutations disrupting the expression of the PDE11A isoform-4 gene (PDE11A) in three kindreds. Tumor tissues showed 2q31-2q35 LOH, decreased protein expression and high cyclic nucleotide levels and cAMP-responsive element binding protein (CREB) phosphorylation. PDE11A codes for a dual-specificity PDE that is expressed in adrenal cortex and is partially inhibited by tadalafil and other PDE inhibitors; its germline inactivation is associated with adrenocortical hyperplasia, suggesting another means by which dysregulation of cAMP signaling causes endocrine tumors.  相似文献   

16.
Crop yields are significantly reduced by aluminum toxicity on highly acidic soils, which comprise up to 50% of the world's arable land. Candidate aluminum tolerance proteins include organic acid efflux transporters, with the organic acids forming non-toxic complexes with rhizosphere aluminum. In this study, we used positional cloning to identify the gene encoding a member of the multidrug and toxic compound extrusion (MATE) family, an aluminum-activated citrate transporter, as responsible for the major sorghum (Sorghum bicolor) aluminum tolerance locus, Alt(SB). Polymorphisms in regulatory regions of Alt(SB) are likely to contribute to large allelic effects, acting to increase Alt(SB) expression in the root apex of tolerant genotypes. Furthermore, aluminum-inducible Alt(SB) expression is associated with induction of aluminum tolerance via enhanced root citrate exudation. These findings will allow us to identify superior Alt(SB) haplotypes that can be incorporated via molecular breeding and biotechnology into acid soil breeding programs, thus helping to increase crop yields in developing countries where acidic soils predominate.  相似文献   

17.
18.
Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair.  相似文献   

19.
20.
To elucidate the genomics of cellular responses to cancer treatment, we analyzed the expression of over 9,600 human genes in acute lymphoblastic leukemia cells before and after in vivo treatment with methotrexate and mercaptopurine given alone or in combination. Based on changes in gene expression, we identified 124 genes that accurately discriminated among the four treatments. Discriminating genes included those involved in apoptosis, mismatch repair, cell cycle control and stress response. Only 14% of genes that changed when these medications were given as single agents also changed when they were given together. These data indicate that lymphoid leukemia cells of different molecular subtypes share common pathways of genomic response to the same treatment, that changes in gene expression are treatment-specific and that gene expression can illuminate differences in cellular response to drug combinations versus single agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号