首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为进一步提高分布式驱动电动汽车行驶过程中的稳定性,提出主动前轮转向(AFS)和直接横摆力矩控制(DYC)协调控制策略.为提高车辆稳态行驶时转向能力,设计基于滑模控制(SMC)的前轮主动转向控制器实时修正前轮转角;以维持车辆工作在稳态工作区为控制目标,设计基于模型预测控制(MPC)的车辆稳定性控制器,通过设定的分配规则按轴荷比等比例分配各轮驱/制动力矩.利用相平面法作为判定依据自适应分配各控制器权重,实现控制器之间的切换.在连续转向工况下,对控制算法进行仿真验证.结果表明:在相同转角输入下,相较于无控车辆,受控状态下车辆的横摆稳定性能提高了16%,行驶状态得到了改善.  相似文献   

2.
为了研究提高高速车辆侧风稳定性的主动控制方法,建立了考虑侧风作用下的车辆八自由度非线性动力学模型,采用基于分段线性轮胎特性二自由度模型作为参考模型,分别设计了多柔性PID主动前轮转向(AFS)和LQR最优控制直接横摆力矩控制(DYC),对比分析了在两种典型工况下,两种不同主动控制方法对高速车辆侧风稳定性的控制效果.研究结果表明:侧风直线行驶工况下DYC操作性、稳定性、轨迹保持能力方面均优于AFS,纵向动力学性能方面AFS优于DYC;侧风前轮转角正弦输入工况下AFS与DYC在操作性、稳定性、轨迹保持能力方面差别不大,纵向动力学性能方面AFS明显优于DYC.  相似文献   

3.
针对线控转向四轮独立驱动电动车的主动前轮转向(AFS)与直接横摆力矩控制(DYC)的集成控制问题,提出了一种基于模型预测控制的、采用分层集成控制结构的集成控制算法,设计了模型预测控制器,研究了基于二次规划的驱动力分配方法,并通过仿真实验对算法进行验证.结果表明:基于模型预测控制理论的集成控制算法能够使车辆有效地跟踪期望运动轨迹,提高车辆稳定性和主动安全性.  相似文献   

4.
车辆电子稳定系统能有效提高车辆在极限工况下的方向稳定性.针对传统直接横摆力矩控制(DYC)没有考虑轮胎附着力极限的局限,提出一种基于轮胎动力动态估计(TDE)算法的新型车辆电子稳定控制系统(ESP),在此基础上,通过主动前轮转向(AFS)协同控制,最大化利用车轮附着力.采用多元回归统计算法设计TDE控制器,采用基于统计数据的多项式拟合获得车轮附着力边界极限和最优动态滑移率上限值;采用模糊逻辑算法设计AFS控制器,补偿因附着力达到极限引起的横摆力矩不足.仿真结果表明,通过与AFS的协同控制,新型ESP能够在改善车辆的方向稳定性的同时,大幅降低车轮制动控制力,减少对车辆纵向速度的影响.  相似文献   

5.
为充分利用路面的纵横向附着力,改善车辆的操纵稳定性,提出基于自抗扰解耦技术的主动前轮转向(AFS)与直接横摆力矩(DYC)集成控制方法。基于仿真实验确定发生侧滑时的车辆前轮转向临界角,并用来划分AFS与DYC各自的工作区域。对AFS与DYC的控制进行加权,使AFS控制的退出与DYC控制的介入渐变进行。基于线性二自由度车辆模型设计了AFS与DYC的自抗扰(ADR)集成控制器。在CarSim中建立车辆模型,由Simulink的控制模型进行控制,进行了高低附着路面的双移线实验。AFS与DYC集成控制相对于AFS、DYC分别单独作用,在高附着路面,其横摆角速度最大值分别下降20%和11.8%,质心侧偏角最大值分别下降28.1%和17.9%,侧向加速度最大值分别下降26.1%和20.7%;在低附着路面,其横摆角速度最大值分别下降14.5%和13.3%,质心侧偏角最大值分别下降6.7%和1.4%,侧向加速度最大值分别下降9.7%和3.5%。实验结果表明,该文协调控制策略及集成控制方法能够提高车辆在高低附着路面行驶的稳定性。  相似文献   

6.
针对分布式电驱动汽车,以实现车辆主动安全性同时兼顾制动能量回收为目标,提出一种主动前轮转向(AFS)与电液复合制动集成的控制策略.AFS控制器采用滑模变结构控制,滑移率控制器采用滑模极值搜索算法,基于分层结构(上层为期望制动力矩计算模块,中层为考虑执行器带宽的动态控制分配模块,下层为电机与液压复合执行器),并考虑位置与速率约束.转向制动时,考虑车辆纵向动力学对侧向动力学的影响,引入前轮转角对滑移率控制律进行了修正.在MATLAB/Simulink中建立七自由度整车模型,对控制算法进行了验证.结果表明:分离路面直线制动时,所提出的控制策略可以同时保证制动能量回收和制动方向稳定性;转弯制动时,可以更好地跟踪理想横摆角速度,提高了车辆的侧向稳定性.  相似文献   

7.
针对四轮独立转向四轮独立驱动电动汽车的操纵稳定性问题,提出了一种基于主动后轮转向(ARS)和直接横摆力矩控制(DYC)的集成控制策略.采用变传动比参考模型,通过基于滑模变结构设计的ARS控制器和非线性DYC控制器,对轮胎线性区域内的控制不足进行弥补,提升车辆非线性范围的操纵性能.对双移线工况进行了测试.结果表明:集成控制器优于ARS控制器和DYC控制器,能够有效提升车辆操纵稳定性以及降低横摆力矩需求,提高了车辆的纵向稳定裕度,集成控制是有效的.  相似文献   

8.
为了提高汽车的操纵稳定性,弥补主动前轮转向(AFS)在轮胎侧向力饱和的情况下对车辆稳定性控制的不足,引入直接横摆力矩控制(DYC),设计了基于相平面的可拓协调控制系统,分为上、下两层。上层为AFS和DYC的功能协调层,以轮胎侧偏特性线性极限和β相图稳定域边界作为依据来划分汽车行驶状态,对应于可拓集合中的经典域、可拓域和非域,运用可拓学理论求解关联度函数,并确定控制器间的协调权重;下层为主动前轮转向控制器和直接横摆力矩控制器,均采用粒子群算法优化PID控制参数。利用Simulink与CarSim软件搭建联合仿真试验平台,选用低附单移线工况和低附阶跃转向工况进行仿真验证。结果表明,本文所设计的可拓协调控制策略能有效弥补单一主动前轮转向控制的不足,改善车辆对参考轨迹的跟踪效果,并能降低质心侧偏角,保证了车辆的行驶稳定性。  相似文献   

9.
对于智能车辆的路径跟踪,传统位置偏差控制方法往往忽略了车辆的动态稳定性.针对这一问题提出一种考虑横向稳定性的智能车辆路径跟踪控制方法.首先建立二自由度车辆动力学模型和路径跟踪误差模型,综合考虑车辆位置偏差和车辆动力学状态,利用基于反馈优势的反推法(FDB)生成期望横摆角速度;然后基于线性二次型跟踪器(LQT)设计了主动前轮转向(AFS)和直接横摆力矩控制(DYC)的集成控制策略,得到了理想的控制输入(前轮转角和外部横摆力矩),进而实现精确跟踪期望横摆角速度和质心侧偏角;最后在Simulink仿真环境中对提出的控制方法进行验证.结果表明:提出的控制方法在路径跟踪的同时具有很好的横向稳定性能;相比于不考虑横向稳定性的控制方法,提出的方法在路径跟踪过程中跟踪精度更高,车辆的质心侧偏角更小,横摆角速度也能更好的跟踪期望值.  相似文献   

10.
以追踪牵引车横摆角速度和折腰角为目标,在3自由度单轨车辆模型基础上设计了主动前轮转向/直接横摆力矩控制(AFS/DYC)的集成控制策略.基于Truck Sim与Simulink搭建车辆闭环仿真模型,进行了双移线工况和鱼钩转向工况仿真试验.仿真结果表明:附着系数为0.85、车速为105 km·h~(-1)的双移线换道操作时,在施加了集成控制的闭环系统下,车辆能够较好地跟踪参考响应,避免开环系统下的摆振现象,路径跟踪得到提升;附着系数为0.30、车速为55 km·h~(-1)的鱼钩转向时,闭环系统在该工况下运行良好,车辆顺利进入鱼钩转向,避免了在开环系统下的侧滑与折叠;所设计的AFS/DYC控制策略有效,可以改善整车的横摆稳定性.  相似文献   

11.
针对汽车主动前轮转向子系统和直接横摆力矩控制子系统的集成控制问题,基于快速终端滑模控制理论设计一种标定参数少和动态响应速度快的鲁棒集成控制器.首先,基于达朗贝尔原理建立包含车身侧向和横摆运动自由度的汽车动力学模型作为底盘集成控制模型.随后,基于快速终端滑模控制理论分别设计主动前轮转向控制律和直接横摆力矩控制律,并且通过汽车质心侧偏角相平面定义的平滑切换因子建立二者的切换规则,实现主动前轮转向子系统和直接横摆力矩控制子系统的平滑切换控制,并且将主动前轮转向子系统和直接横摆力矩控制子系统的主要工作区域分别控制在轮胎的线性区域和非线性区域.最后,结合车辆动力学仿真软件对所提出的鲁棒集成控制器的可行性和有效性进行验证,结果表明:所提出的底盘集成控制器可以同时兼顾汽车操纵稳定性和乘坐舒适性.  相似文献   

12.
提出一种制动防抱死系统(ABS)与主动前轮转向(AFS)系统的集成控制算法.ABS采用逻辑门限值控制算法,以车轮的角加速度为主要门限、滑移率为辅助门限.AFS采用基于二自由度车辆模型建立的横摆力矩补偿前馈控制和滑模反馈控制相结合的复合控制算法.采用8自由度车辆模型验证所提出的控制算法,该模型包含“Magic Formula”轮胎模型和基于单点预瞄的驾驶员模型.在Matlab/Simulink中通过对开路面的直线制动工况和定圆弯道制动工况下的仿真来评价集成控制算法.仿真结果表明:在对开路面上ABS与AFS的集成控制能够有效地缩短制动距离,提高车辆制动过程的方向稳定性.  相似文献   

13.
汽车DYC系统的二阶滑模控制   总被引:1,自引:0,他引:1  
为提高汽车直接横摆力矩控制(DYC)系统的精度和鲁棒性,提出了DYC二阶滑模(SOSM)控制策略.为了发挥滑模控制的优势并抑制其固有的颤振现象,基于高阶滑模控制理论设计了DYC的上层控制器--二阶滑模变结构车身运动控制器,并采用螺旋控制算法设计滑模控制律;为了产生维持车辆稳定所需的目标横摆力矩,在目标滑移率自动识别的基...  相似文献   

14.
采用横摆力矩优化分配方法的车辆稳定性控制系统   总被引:1,自引:0,他引:1  
为提高车辆的操纵稳定性,设计了采用横摆力矩优化分配方法的车辆稳定性控制系统。控制系统的上层采用基于最优理论的横摆力矩控制器,该控制器根据校正横摆力矩来计算目标控制车轮的参考滑移率;下层是PID控制器,它跟踪上层控制器的参考滑移率,对目标车轮施加制动力矩从而使车辆稳定。采用八自由度非线性车辆模型在不同工况下进行仿真,结果表明所设计的控制系统能够有效地改善车辆的操纵稳定性。  相似文献   

15.
为了提高轮毂电机驱动汽车的纵横向稳定性,将汽车的横摆控制和防滑控制相结合,采用分层控制架构搭建纵向和横向稳定性联合控制模型.上层为力矩决策层.基于比例-积分-微分(PID)控制算法构建车辆纵向车速跟踪控制器;基于模糊P ID控制算法搭建驱动防滑控制器,采用前馈加反馈的控制方法决策出驱动防滑力矩;基于二阶滑模控制算法建立直接横摆力矩控制器,设计附加横摆力矩加权模块控制汽车的横摆特性.下层为力矩分配层.采用优化分配算法将上层决策出的总纵向力矩、驱动防滑力矩和直接横摆力矩合理地分配到4个车轮上.通过加速和转向联合仿真工况验证设计的纵横向稳定性控制策略的有效性.研究结果表明:车轮最大滑转率为0.17,横摆角速度最大偏差值为0.01 rad/s,质心侧偏角最大偏差值为0.011 rad,验证了控制算法的有效性.  相似文献   

16.
基于分布式驱动电动汽车具有各轮转矩可单独控制的特点,利用最优转矩分配方法提出其在危险工况下的稳定性控制算法.该算法分为稳定性判断与横摆力矩控制模块、滑移率计算与控制模块及各轮驱动力矩分配模块.稳定性判断与横摆力矩控制模块确定车辆稳定性状态,滑模变结构控制方法用于跟踪理想横摆角速度,输出期望的横摆力矩,确保非线性系统在受到外界干扰时保持稳定;滑移率计算与控制模块计算各轮的滑移状态,通过滑模变结构控制的方法进行各轮滑移率的控制;驱动力矩分配模块综合考虑轮胎力、地面附着等因素,根据横摆控制和滑移率控制的需求,分配各轮驱动力矩.利用联合仿真进行工况验证,结果表明:与各轮力矩平均分配算法相比,所提的力矩分配算法具有更优良的稳定控制效果.  相似文献   

17.
汽车ESC系统主环伺服环分层结构控制策略   总被引:1,自引:1,他引:0  
针对提高车辆操纵稳定性的电子稳定控制系统(ESC)的控制问题,提出了主环〖XC半字线.tif,JZ〗伺服环分层结构的ESC控制策略。主环控制器采用一阶滑模控制算法,设计了滑模面和滑模控制律,其输出为保持车辆稳定性所需的车身附加横摆力矩。伺服环控制器采用近似模拟人类思维的九点五态控制算法,通过控制制动压力实现期望的制动滑移率,从而产生附加横摆力矩。设计了具有实时视景反馈功能的驾驶员在环仿真平台,对分层控制策略进行了在线测试。测试结果表明,提出的ESC控制策略显著地提高了低附着路面或驾驶员过度操作车辆等工况的操纵稳定性和主动安全性,驾驶员在环仿真方法提高了测试的真实性和开发控制策略的针对性。  相似文献   

18.
为研究复杂环境下车辆主动前轮转向系统(AFS)稳定性问题,提出一种基于RBF神经网络的主动前轮转向自抗扰控制(ADRC)方法,通过设计RBF神经网络结构采用梯度下降法达到自抗扰控制器参数整定的目的,改善ADRC参数多整定耗时且控制效果难以保持最优的不足;针对车辆AFS定传动比的不足,设计固定横摆角速度增益的理想变传动比规则。结果表明,基于RBF神经网络的ADRC策略能够较好的实现动态跟踪主动前轮转向理想横摆角速度,同时相比ADRC抗干扰量提高了25.8%,有效抑制了横摆角速度的振荡幅值。可见该方法提高了理想横摆角速度的跟踪能力,改善了车辆的可控性和稳定性并具有良好控制精度。  相似文献   

19.
为提升车辆稳定性控制系统(VDC)的性能,综合考虑前轮转角、车速和路面附着,提出一个车辆转向过程中的稳定性指标。基于该稳定性指标,得到综合考虑车辆动力性、操控性和稳定性的车速上限。制定了一种车速控制和主动横摆力矩联合控制的控制策略,同时控制发动机扭矩和主动横摆力矩。实车实验证明了该控制策略在高速、大转向角时的有效性。  相似文献   

20.
 针对高速工况下四轮独立驱/制动电动车的车道偏离问题,提出一种基于主动转矩分配的车道保持辅助控制方法。该方法的辅助控制系统分为3层,顶层控制器根据人-车-路信息实时进行辅助控制决策,并计算车道保持所需的横摆响应;中层控制器基于滑模控制算法,计算横摆响应跟踪所需的附加横摆力矩;底层控制器通过主动转矩分配产生附加横摆力矩,干预车辆行驶轨迹,以达到车道保持的目的。采用CarSim/Simulink联合仿真进行高速单移线实验验证,结果表明,提出的基于主动转矩分配的四轮独立驱/制动电动车车道保持辅助控制方法,具有良好的车辆动力学稳定性,在高附路面和低附路面上均能够有效地干预车辆行驶轨迹,防止车辆偏离车道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号