首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青藏铁路风火山隧道气温轨温试验及无缝线路设计   总被引:1,自引:0,他引:1  
研发了适合青藏高原恶劣气候环境的气温轨温自动采集存储系统.首次对青藏铁路风火山隧道内外的气温和轨温进行了为期1年的连续测试,获得了其变化特点.在此基础上,进行了风火山隧道无缝线路锁定轨温设计.利用有限单元法建立了无缝线路轨道结构的有限元模型,分析了风火山隧道无缝线路采用长钢轨贯穿隧道布置方式的可行性,计算了轨温过渡区的钢轨温度力梯度和最大钢轨伸缩位移.计算结果表明:当轨温过渡区长度为30-50m时,风火山隧道无缝线路可采用该种轨条布置方式,但需要布置一定数量的防爬设备.  相似文献   

2.
为分析短轨枕式整体承轨台轨道结构桥墩位移与轨面变形的映射关系,揭示自重作用下桥墩顶在竖向、横向以及纵向3个方向位移工况下钢轨、轨道板变形及内力分布规律,以上海市轨道交通11号线花桥段为例,通过建立桥墩-梁-轨道耦合模型,并引入线路轨道静态几何尺寸容许偏差管理值,得到城市轨道交通高架结构的变形控制指标.研究表明,桥墩横向...  相似文献   

3.
为了准确掌握无砟轨道钢轨温度力变化规律并对其进行实时监测,首先建立了无砟轨道三维有限元模型,仿真分析了不同温度条件下的钢轨纵向温度力;然后利用应变法测量了无砟轨道钢轨的纵向温度力,验证仿真结果的准确性;并在此模型基础上,计算分析了20℃温度变化量条件下一跨钢轨内部应力分布情况。结果表明,不同温度条件下钢轨纵向温度力的仿真结果与实验结果吻合良好,此仿真模型能较好反映钢轨随温度变化的纵向温度力情况。仿真结果显示,轨腰纵向温度力与温度变化成线性正相关,轨底的纵向温度应力除了受到温度变化影响外,还受到扣件作用,扣件附近轨底的受力峰值高于轨头和轨腰,此处将是钢轨温度力重点监测及检查部位。  相似文献   

4.
三峡工程永久船闸高边坡岩体力学参数的敏感度分析   总被引:7,自引:1,他引:6  
利用监测信息(如位移)进行优化反演是确定模型参数的有效方法,针对三峡永久船闸高边坡,通过对一组参数基准值加入一定的扰动量以观察相应的计算位移的变化,分析了不同的岩体力学参数对边坡监测点计算位移的敏感度及测点的布置对敏感度的影响·敏感度较大的参数可以通过优化反演求得,测点的位置不同,该处的计算位移受参数的影响也不同,为提高参数的敏感度,应对测点进行合理的布置·  相似文献   

5.
在运营过程中,受高速列车的碾压和冲击,小半径曲线地段已成为高速铁路轨道结构的薄弱环节之一.为保障列车的安全运行,需建立小半径曲线地段轨道结构长期监测系统,实现监测数据的自动采集、传输、存储和关联分析,并对可能发生的破坏进行预测预警.通过对2年监测周期内小半径曲线地段CRTS Ⅱ型板式无砟轨道结构的温度、受力变形等监测数据的综合分析,得出合肥地区夏季轨道板板中的月最高温度是月最高气温值增加11℃,冬季轨道板板中的月最高温度是月最高气温值减少3℃;全年路基摩擦板地段钢轨与轨道板的纵向相对位移在1mm以内,大端刺附近钢轨与轨道板的纵向相对位移最大值为2.9mm;从简支梁到端刺,钢轨受到的压应力逐渐减小,冬季端刺区钢轨出现了拉应力,最大拉应力为32MPa.  相似文献   

6.
针对墩底沉降引起的桥上CRTSⅡ型板式无砟轨道纵向受力与变形问题,基于有限元法和梁-板-轨相互作用机理,建立多跨简支梁和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型,研究各墩底均匀沉降及差异沉降条件下无砟轨道和桥梁结构纵向力与位移分布规律.结果表明:各墩底发生均匀沉降时,两侧桥台及相邻桥墩顶为薄弱位置,两种桥上轨道结构纵向力与位移最大值及其变化趋势基本一致,且随沉降量的增加而线性增大;各墩底发生差异沉降时,沉降值突变的相邻桥墩顶为薄弱位置,该处轨道结构纵向力与位移随着沉降差值的增加而明显增大;需严格把控长大梁桥墩底桩基础的施工质量,避免各墩底发生差异沉降;研究成果可为桥上CRTSⅡ型板式无砟轨道无缝线路设计改进及工程建设提供参考.  相似文献   

7.
以北京南站大跨度站厅为工程背景,根据荷载实际作用位置进行结构动力时程分析;通过数值模拟结果确定高架站厅现场试验测点布置方案,获取高架站厅关键位置的动力响应.对实测数据的分析表明,列车类型与荷载作用位置对高架站厅结构振动响应影响明显.参照振动舒适度标准,高架站厅结构的实测振动强度接近甚至超过规范限值,而现场烦恼率实际值与其理论值不符,说明现有结构舒适度评价标准并不适合直接用于"房桥合一"结构体系的高架站厅结构的舒适度评价.  相似文献   

8.
桥上无碴轨道无缝道岔力学特性分析   总被引:6,自引:0,他引:6  
采用有限单元方法,建立了桥上无碴轨道、无缝道岔伸缩力的计算模型,分析了轨温变化幅度、扣件阻力、限位值、间隔铁数量等轨道结构参数对无缝道岔受力及变形的影响.研究表明,桥上无碴轨道无缝道岔的温度力和位移受轨温变化幅度的影响很大,扣件阻力对结构受力也有很大的影响,而限位器、间隔铁阻力参数变化对结构的影响要居次要地位.  相似文献   

9.
收敛位移是隧洞开挖过程中围岩变形与应力状态变化最直观的反映之一。为克服传统自动化收敛监测仪器精度不高、自动化程度偏低、数据处理复杂、耐久性较差等缺点,构建了新型接触式隧洞收敛监测系统(TPMS)。通过求取最优监测平面的优化目标函数,将测点空间三维坐标换算为监测平面二维坐标,并推导了围岩收敛位移计算公式。基于高放废物地质处置"北山坑探设施"工程,使用TPMS对断层破碎带围岩进行了长期收敛位移监测试验,获得了监测断面位移包络图和各测点位移时程曲线,并与人工监测数据对比分析,论证了其使用的可行性和监测数据的准确性。试验数据表明:各测点位移大致随时间先呈线性增长后增长速率逐渐减小;位移量自起拱处向拱顶逐渐增大,最大位移为1. 174 mm,最大位移速率为0. 007 98 mm/d。研究成果可为地下工程围岩收敛监测和分析提供借鉴与参考。  相似文献   

10.
热误差补偿技术是提高机床加工精度经济有效的方法,确定最佳关键温度测点布置位置和数目将极大提高机床热误差模型的精度和鲁棒性。针对一台立式加工中心,进行了机床热误差测量试验,根据其温度场,提出了模糊聚类与信息论相结合的方法,寻找最佳温度测点布置位置。该方法根据温度变量间的相似性,对温度变量聚类分组,然后利用互信息法对组内变量单独寻优,实现温度测点优化布置,最后利用多元线性回归分析建立机床热误差预测模型。在VMC1165立式加工中心进行了试验验证,温度测点减少为4个,热误差模型的拟合最大残差降低到5μm以内,相对于其他方法进一步提高机床热误差预测精度。  相似文献   

11.
为研究地震作用下桥上CRTSⅢ型板式无砟轨道系统的动力响应,以11×32 m简支梁桥为例,基于有限元法和梁-轨-板相互作用原理,建立了桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型,分析了不同地震波及地震动强度对系统受力变形的影响.研究结果表明:与El-Centro波相比,天津宁河波对系统动力响应有显著的增强效应,钢轨应力曲线均关于跨中呈反对称分布,最大拉压应力为206.5 MPa;各层间构件受力变形曲线均关于桥梁纵向呈轴对称分布,钢轨位移线形平滑,在中跨桥右侧1/3处达到最大,为100.6 mm;轨道板、自密实混凝土层、底座板位移随桥跨数的增加呈阶梯增减变化,最大值出现于第6跨桥,轨板相对位移在最右侧梁缝处达到最大,各结构的纵向力较小;随着地震动强度的提高,系统受力变形显著增加;与设计地震相比,罕遇地震下轨板相对位移最大值增加了146.9%,可达85.5 mm,极易导致轨下胶垫窜出引发扣件失效;左侧桥台与相邻固定支座墩顶最大位移差值显著,为96.6 mm,增加了落梁风险;对于地震区桥上无缝线路,需加强对薄弱位置处轨板相对位移以及相邻墩/台顶位移的关注.  相似文献   

12.
千米级以上超大跨径桥梁已逐步应用于高速铁路建设,但桥上无缝线路更加复杂的梁轨相互作用给安全运营带来了新的挑战.温度作用下千米级以上超大跨径桥梁空间变形大,可能对其上无缝线路造成影响.常规分析模型无法充分体现温度对千米级以上超大跨径桥上无缝线路的影响.因此,以超大跨径公铁两用悬索桥为例,建立无缝线路-超大跨径桥梁空间耦合模型,不考虑风、车荷载的影响,分析温度作用下桥梁空间变形引起的梁轨相互作用变化规律.研究结果表明:由温度引起的钢轨纵向力除传统的基本温度力、伸缩附加力外,还包括温度作用下桥梁挠曲引起梁轨相对位移而产生的新附加力—"温度挠曲力".该力导致了梁轨相对位移及钢轨纵向力均发生了不同于普通桥上无缝线路的变化.在超大跨径桥上无缝线路中不存在传统意义上的"固定区",为此提出了有关"实际锁定轨温"测试与应用的新方法.可为千米级以上超大跨径桥上无缝线路的设计、建造及养护维修提供参考.  相似文献   

13.
热误差是精密、超精密加工中主要的误差源之一,热误差温度测点优化是热误差补偿的关键问题.在机床空间多维布置的大量温度测点之间存在多重相关性,从众多测点中选取特征点的优劣程度,将直接影响到热误差补偿效果.通过对温度测点间多重相关性及温度与热误差关系的综合分析,采用改进的模糊C-均值(IFCM)聚类算法对温度测点进行聚类,以减小类与类之间温度测点的相关性,且避免FCM算法对初始聚类中心敏感易局部收敛的缺点.对温度测点按灰色关联分析(GRA)中的灰色综合关联度进行排序,从变化量和变化率的角度综合反映温度与热误差的关系.采用IFCM-GRA对温度测点进行优化,提高了热误差模型的鲁棒性及准确性,使温度测点数量大幅度减少.在某型号精密卧式加工中心上进行实验,温度测点从17个减少到4个.在不同转速下,利用多元线性回归对优化出的温度测点与热误差建立模型,所建立模型均能很好地预测热误差变化情况,经对预测模型分析,轴向热误差由几十微米减小到5μm以内.  相似文献   

14.
为分析有轨电车嵌入式轨道桥上无缝线路梁轨相互作用机理并获得最优参数组合,根据梁轨相互作用原理,建立了多跨简支梁桥上嵌入式轨道桥上无缝线路力学分析模型,采用正交试验方法研究钢轨类型、高分子材料纵向阻力、桥墩纵向刚度、桥台纵向刚度和桥梁跨数这5种因素对嵌入式轨道桥上无缝线路力学特性的影响.研究结果表明:采用小阻力高分子材料可明显减小钢轨附加作用力,但轨板相对位移和断缝值有较大增长;当高分子材料纵向阻力约为5.0×10~6 N/m时,轨板相对位移达到限值,高分子材料产生拉裂破坏;最佳简支梁桥上有轨电车嵌入式轨道无缝线路设计方案为钢轨类型60R2槽型轨、高分子材料纵向阻力2.0×10~7 N/m、桥墩纵向刚度3.0×10~7 N/m、桥台纵向刚度2.0×10~8 N/m,桥梁跨数根据实际工程而定.  相似文献   

15.
根据位移影响线理论,提出基于多测点的位移影响线差值曲率的桥梁损伤识别方法,实现对桥梁结构损伤前初始数据未知情况下的损伤识别检测.推导了简支梁出现损伤时的多测点位移影响线差值曲率公式,并对简支梁桥结构不同测点位置、不同损伤程度、不同损伤位置及多损伤的情况进行损伤识别分析.为验证该损伤识别指标的适用性,以某固端梁和三跨连续梁为研究对象,建立数值分析模型来进行损伤识别研究.结果表明:该方法可以识别出简支梁桥的损伤位置,对于多处出现损伤也有良好的识别效果;多测点位移影响线差值曲率指标可以用于固端梁和连续梁的损伤识别;仅需利用4个位移测点,不需要损伤前数据,便于实现;损伤识别效果受测点影响,选取合适的测点位置能提高损伤识别的效果.  相似文献   

16.
以一预应力混凝土单向纵坡斜拉桥———南平闽江大桥为对象,在拟定采用液体粘滞阻尼器控制主梁纵向位移的前提下,通过建立的精细有限元模型,进行施工阶段、运营阶段和弹性地震响应分析,从而确定阻尼器主要参数指标.对阻尼器数量与设置位置进行了分析和优化,在综合考虑主梁纵向位移减小量、墩底内力增加量、经济成本和方便施工养护的前提下,给出最优的阻尼器布置方案.研究结果表明,在两主塔下横梁与主梁之间各布置2个阻尼器,可使主梁的纵向位移减小0.139 m,并使主墩墩底的弯矩和剪力大幅降低.施工实测数据结果证明了阻尼器良好的工作性.  相似文献   

17.
为研究小阻力扣件布置方案对重载铁路连续梁桥上无缝线路纵向力分布规律的影响,采用一种经过验证的梁轨相互作用分析方法,建立考虑相邻多跨简支梁结构的30 t轴重重载铁路(60+100+60)m连续梁桥-桥上无缝线路的一体化空间有限元模型.在此基础上,对多种小阻力扣件方案进行比选,探讨了扣件阻力、下部结构刚度、荷载模式、制动力率等设计参数的影响.研究结果表明:仅在连续梁范围内铺设小阻力扣件,可在保证钢轨应力和墩顶水平力均较小的同时减小钢轨断缝值;小阻力扣件纵向阻力取值对钢轨应力的影响可达11.2%;在连续梁范围内铺设小阻力扣件后,梁轨快速相对位移成为主要控制性指标,100 m跨重载连续梁桥制动墩顶纵向刚度限值为3000 k N/cm;荷载模式和制动力率对梁轨相对位移影响较大,建议通过试验进一步明确重载列车的制动力率取值.  相似文献   

18.
针对青藏铁路不冻泉地区桥上无缝线路梁轨纵向位移开展试验研究与理论分析。研究适合青藏高原恶劣气候环境的梁轨纵向位移自动采集存储系统,对青藏铁路不冻泉地区双片式T型混凝土简支梁桥的梁端纵向位移和梁轨纵向相对位移分别进行为期214 d和134 d的连续测试。对测试数据进行理论分析。研究结果表明:测试期间内,该地区梁体最大日温差为9.28℃;现行《铁路轨道设计规范》中关于有砟轨道混凝土梁体日温差的取值以及桥上无缝线路伸缩力与位移的计算方法适用于该地区的桥上无缝线路设计。  相似文献   

19.
提出了基于灰色系统理论中的灰色关联分析方法对数控机床热误差元素进行优化建模的方法.该方法先根据温度测点之间灰色综合相关度矩阵,对依据工程经验布置在机床上的温度测点进行分组;再通过计算各温度测点数据与热误差数据间的相关程度,从各组中选择代表测点,并对其进行排列组合;通过计算各温度测点组合所建立模型的理论输出与实际热误差间灰色综合相关度,确定关键温度测点.将该方法应用于一台数控车削中心的热误差建模,温度测点数量由16个减至4个,据此表明建立的模型能够避免温度测点之间相互耦合的影响,准确性和鲁棒性均得到较大提高.  相似文献   

20.
为实现混凝土泵车臂架类柔性多体结构健康监测的应变传感器优化布置,首先,利用各待选测点应变信号的相关系数构建了模糊支持度矩阵,计算了各待选测点的综合支持度;然后,将待选测点应力水平、传感器安装难易程度、测点安全性、应力梯度等因素进行了分级及标准量化;接着,利用层次分析法确定了各个因素的权重关系;最后,利用综合评价法对待选测点进行优化,确定了健康监测测点的最优位置.文中还以某四节臂架泵车为例,选择4种工况分别对其应变传感器的布置进行了优化,结果证明了该综合评价方法的稳定性和可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号