首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular matrix and neuronal movement   总被引:1,自引:0,他引:1  
Summary During brain development, both neuronal migration and axon guidance are influenced by extracellular matrix molecules present in the environment of the migrating neuronal cell bodies and nerve fibers. Glial laminin is an extracellular matrix protein which these early brain cells preferentially attach to. Extracellular glycosaminoglycans are suggested to function in restricting neuronal cell bodies and axons from certain brain areas. Since laminin is deposited along the radial glial fibers and along the developing nerve pathways in punctate form, the punctate assemblies may be one of the key factors in routing the developing neurons in vivo. This review discusses the role of laminin in neuronal movement given the present concept of the extracellular matrix molecules and their proposed interactions.  相似文献   

2.
Extracellular matrix and neuronal movement   总被引:3,自引:0,他引:3  
P Liesi 《Experientia》1990,46(9):900-907
During brain development, both neuronal migration and axon guidance are influenced by extracellular matrix molecules present in the environment of the migrating neuronal cell bodies and nerve fibers. Glial laminin is an extracellular matrix protein which these early brain cells preferentially attach to. Extracellular glycosaminoglycans are suggested to function in restricting neuronal cell bodies and axons from certain brain areas. Since laminin is deposited along the radial glial fibers and along the developing nerve pathways in punctate form, the punctate assemblies may be one of the key factors in routing the developing neurons in vivo. This review discusses the role of laminin in neuronal movement given the present concept of the extracellular matrix molecules and their proposed interactions.  相似文献   

3.
Tenascin-C is an extracellular matrix glycoprotein, whose expression is highly restricted in normal adult tissues, but markedly up-regulated in a range of tumors, and therefore serves as a potential receptor for targeted anticancer drug or gene delivery. We describe here a liposomal carrier system in which the targeting ligand is sulfatide. Experiments with tenascin-C-expressing glioma cells demonstrated that binding of liposomes to the extracellular matrix relied essentially on the sulfatide-tenascin-C interaction. Following binding to the extracellular matrix, the sulfatide-containing liposomes were internalized via both caveolae/lipid raft- and clathrin-dependent pathways, which would ensure direct cytoplasmic release of the cargoes carried in the liposomes. Such natural lipid-guided intracellular delivery targeting at the extracellular matrix glycoproteins of tumor cells thus opens a new direction for development of more effective anticancer chemotherapeutics in future. K. Shao & Q. Hou: These authors contributed equally to this work. Received 22 September 2006; received after revision 5 December 2006; accepted 9 January 2007  相似文献   

4.
Periostin is a matricellular protein that is composed of a multi-domain structure with an amino-terminal EMI domain, a tandem repeat of four FAS 1 domains, and a carboxyl-terminal domain. These distinct domains have been demonstrated to bind to many proteins including extracellular matrix proteins (Collagen type I and V, fibronectin, tenascin, and laminin), matricellular proteins (CCN3 and βig-h3), and enzymes that catalyze covalent crosslinking between extracellular matrix proteins (lysyl oxidase and BMP-1). Adjacent binding sites on periostin have been suggested to put the interacting proteins in close proximity, promoting intermolecular interactions between each protein, and leading to their assembly into extracellular architectures. These extracellular architectures determine the mechanochemical properties of connective tissues, in which periostin plays an important role in physiological homeostasis and disease progression. In this review, we introduce the proteins that interact with periostin, and discuss how the multi-domain structure of periostin functions as a scaffold for the assembly of interacting proteins, and how it underlies construction of highly sophisticated extracellular architectures.  相似文献   

5.
In this review, we detail the current understanding of the extracellular matrix (ECM) of the migratory slug phase of the cellular slime mould,Dictyostelium discoideum. We describe some structural and non-structural molecules which comprise the ECM, and how these molecules reflect both plant and animal ECM systems. We also describe zones of the multicellular slug that are known to make ECM components, including the role of the prestalk cells and the slug epithelium-like layer. Finally, we review the contributions of studies on mutant to our understanding of the ECM ofD. discoideum, and relate this to differentiation and development in more complex eukaryotic systems.  相似文献   

6.
Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium, and contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis. Although activated myofibroblasts are the main effector cells in the fibrotic heart, monocytes/macrophages, lymphocytes, mast cells, vascular cells and cardiomyocytes may also contribute to the fibrotic response by secreting key fibrogenic mediators. Inflammatory cytokines and chemokines, reactive oxygen species, mast cell-derived proteases, endothelin-1, the renin/angiotensin/aldosterone system, matricellular proteins, and growth factors (such as TGF-β and PDGF) are some of the best-studied mediators implicated in cardiac fibrosis. Both experimental and clinical evidence suggests that cardiac fibrotic alterations may be reversible. Understanding the mechanisms responsible for initiation, progression, and resolution of cardiac fibrosis is crucial to design anti-fibrotic treatment strategies for patients with heart disease.  相似文献   

7.
Periostin is a protein that plays a key role in development and repair within the biological matrix of the lung. As a matricellular protein that does not contribute to extracellular matrix structure, periostin interacts with other extracellular matrix proteins to regulate the composition of the matrix in the lung and other organs. In this review, we discuss the studies exploring the role of periostin to date in chronic respiratory diseases, namely asthma and idiopathic pulmonary fibrosis. Asthma is a major health problem globally affecting millions of people worldwide with significant associated morbidity and mortality. Periostin is highly expressed in the lungs of asthmatic patients, contributes to mucus secretion, airway fibrosis and remodeling and is recognized as a biomarker of Th2 high inflammation. Idiopathic pulmonary fibrosis is a fatal interstitial lung disease characterized by progressive aberrant fibrosis of the lung matrix and respiratory failure. It predominantly affects adults over 50 years of age and its incidence is increasing worldwide. Periostin is also highly expressed in the lungs of idiopathic pulmonary fibrosis patients. Serum levels of periostin may predict clinical progression in this disease and periostin promotes myofibroblast differentiation and type 1 collagen production to contribute to aberrant lung fibrosis. Studies to date suggest that periostin is a key player in several pathogenic mechanisms within the lung and may provide us with a useful biomarker of clinical progression in both asthma and idiopathic pulmonary fibrosis.  相似文献   

8.
Skin is an organ that is susceptible to damage by external injury, chronic inflammation, and autoimmunity. Tissue damage causes alterations in both the configuration and type of cells in lesional skin. This phenomenon, called tissue remodeling, is a universal biological response elicited by programmed cell death, inflammation, immune disorders, and tumorigenic, tumor proliferative, and cytoreductive activity. In this process, changes in the components of the extracellular matrix are required to provide an environment that facilitates tissue remodeling. Among these extracellular matrix components, periostin, a glycoprotein that is predominantly secreted from dermal fibroblasts, has attracted attention. Periostin localizes in the papillary dermis of normal skin, and is aberrantly expressed in the dermis of lesional skin in atopic dermatitis, scar, systemic/limited scleroderma, melanoma, cutaneous T cell lymphoma, and skin damage caused by allergic/autoimmune responses. Periostin induces processes that result in the development of dermal fibrosis, and activate or protract the immune response. The aim of this review was to summarize recent knowledge of the role of periostin in the pathogenesis of dermatoses, and to explore whether periostin is a potential therapeutic target for skin diseases.  相似文献   

9.
In the central nervous system, various extracellular matrix components have been identified which are strongly expressed during development and in most areas of the brain down-regulated during maturation. Examples are tenascin-C, neurocan and hyaluronan. While tenascin-C is well known to be associated with morphogenic events and the active contribution of hyaluronan to various physiological processes is increasingly acknowledged, neurocan belongs to a class of molecules thought to be generally more associated with barrier functions: chondroitin sulfate proteoglycans. Consideration of these and related molecules and their processing in the context of the general organization of the brain extracellular matrix, their changes during brain maturation and their implication in different types of remodeling processes in adult brain, like normal and pathological synaptic plasticity, inflammatory and dementia-associated diseases and gliomas, may indicate that components of the extracellular matrix could provide valuable early information about the pathological state of the brain.Received 29 January 2004; received after revision 25 March 2004; accepted 2 April 2004  相似文献   

10.
Syndecans are a family of integral membrane proteoglycans with conserved membrane-spanning and intracellular domains but with structurally distinct extracellular domains (ectodomains). They are known to function as heparan sulphate co-receptors in fibroblast growth factor signalling as well as to link cells directly to the extracellular matrix. These and other biological activities of syndecans involve specific interactions of the heparan sulphate side chains of syndecans with cytokines and extracellular matrix proteins. Four different vertebrate syndecans, designated as syndecans 1–4 (or syndecan, fibroglycan, N-syndecan and amphiglycan, respectively), are known. During embryonic development, syndecans have specific and highly regulated expression patterns that are distinct from the expression in adult tissue, suggesting an active role in morphogenetic processes. The developmental expression of syndecans is particularly intense in mesenchymal condensates and at epithelium mesenchyme interfaces, where a number of heparan sulphate-binding cytokines and matrix components are also expressed in a regulated manner, ofter spatially and temporally co-ordinated with the syndecan expression. Recent evidence indicates that the regulation of heparan sulphate fine structure (mainly the number and arrangement of sulphate groups along the polymer) provides a mechanism for the cellular control of syndecan-protein interactions. Furthermore, morphogenetically active cytokines such as fibroblast growth factor-2 and transforming growth factor-β participate in the regulation of syndecan expression and glycosaminoglycan structure. This review discusses the developmental expression and binding functions of syndecans as well as the molecular regulation of specific heparan sulphate-protein interactions.  相似文献   

11.
The Ras family of GTPases in cancer cell invasion   总被引:3,自引:0,他引:3  
The ability of tumoral cells to invade surrounding tissues is a prerequisite for metastasis. This is the most life-threatening event of tumor progression, and so research is intensely focused on elucidating the mechanisms responsible for invasion and metastasis. The Ras superfamily of GTPases comprises several subfamilies of small GTP-binding proteins whose functions include the control of proliferation, differentiation, and apoptosis, as well as cytoskeleton organization. The development of metastasis is a multistep process that requires coordinated activation of proliferation, motility, changes in normal cell-to-cell and cell-to-substrate contacts, degradation of extracellular matrix, inhibition of apoptosis, and adaptation to an inappropriate tissue environment. Several members of the Ras superfamily of proteins have been implicated in these processes. The present review summarizes the current knowledge in this field.  相似文献   

12.
The plasminogen activator system: biology and regulation   总被引:29,自引:0,他引:29  
The regulation of plasminogen activation involves genes for two plasminogen activators (tissue type and urokinase type), two specific inhibitors (type 1 and type 2), and a membrane-anchored urokinase-type plasminogen-activator-specific receptor. This system plays an important role in various biological processes involving extracellular proteolysis. Recent studies have revealed that the system, through interplay with integrins and the extracellular matrix protein vitronectin, is also involved in the regulation of cell migration and proliferation in a manner independent of proteolytic activity. The genes are expressed in many different cell types and their expression is under the control of diverse extracellular signals. Gene expression reflects the levels of the corresponding mRNA, which should be the net result of synthesis and degradation. Thus, modulation of mRNA stability is an important factor in overall regulation. This review summarizes current understanding of the biology and regulation of genes involved in plasminogen activation at different levels. Received 21 December 1998; received after revision 8 March 1999; accepted 14 April 1999  相似文献   

13.
Matrix metalloproteinases in tumor invasion   总被引:26,自引:0,他引:26  
Controlled degradation of extracellular matrix (ECM) is essential for the growth, invasion, and metastasis of malignant tumors, and for tumor-induced angiogenesis. Matrix metalloproteinases (MMPs) are a family of zinc-dependent neutral endopeptidases collectively capable of degrading essentially all ECM components and they apparently play an important role in all these aspects of tumor development. Furthermore, recent evidence suggests that MMPs also play a role in tumor cell survival. In this review, we discuss the current concept concerning the role of MMPs and their inhibitors in tumor invasion, as a basis for prognosis and targeted therapeutic intervention in cancer.  相似文献   

14.
Summary We briefly review evidence from in vitro models that supports a role for the extracellular matrix in two essential steps of organogenesis: the establishment of appropriate three-dimensional cell-to-cell relationships, and the determination of a correct cell polarity.  相似文献   

15.
R Montesano 《Experientia》1986,42(9):977-985
We briefly review evidence from in vitro models that supports a role for the extracellular matrix in two essential steps of organogenesis: the establishment of appropriate three-dimensional cell-to-cell relationships, and the determination of a correct cell polarity.  相似文献   

16.
Small proteoglycans   总被引:6,自引:0,他引:6  
In this review the structure and functions of two non-related proteoglycan families are discussed. One family represents a group of extracellular matrix macromolecules characterized by core proteins with leucine-rich repeat motifs. Within this family special attention is given to those members which carry chondroitin or dermatan sulfate glycosaminoglycan chains. The second family is characterized by repeat sequences of serine and glycine. Their members are products of a single core protein gene and are characteristic constituents of secretory vesicles in cells of the haematopoietic lineage.  相似文献   

17.
Tumor progression and metastasis are the pathologic effects of uncontrolled or deregulated invasive growth, a process in which proteases play a fundamental role. They mediate the degradation of extracellular matrix components and intercellular cohesive structures to allow migration of the cells into the extracellular environment and activate growth and angiogenic factors. In addition to metalloproteases and the plasminogen activation system, another protease, matriptase, contributes substantially to these processes. Matriptase is a type II transmembrane trypsin-like serine protease that is expressed by cells of epithelial origin and is overexpressed in a variety of human cancers. It has been suggested that this protease not only facilitates cellular invasiveness but may also activate oncogenic pathways. This review summarizes current knowledge about matriptase, its putative role in tumor initiation and progression, and its potential as a novel target in anti-cancer therapy. Received 29 June 2006; received after revision 1 August 2006; accepted 19 September 2006  相似文献   

18.
Engineering of arteries in vitro   总被引:1,自引:1,他引:0  
This review will focus on two elements that are essential for functional arterial regeneration in vitro: the mechanical environment and the bioreactors used for tissue growth. The importance of the mechanical environment to embryological development, vascular functionality, and vascular graft regeneration will be discussed. Bioreactors generate mechanical stimuli to simulate biomechanical environment of arterial system. This system has been used to reconstruct arterial grafts with appropriate mechanical strength for implantation by controlling the chemical and mechanical environments in which the grafts are grown. Bioreactors are powerful tools to study the effect of mechanical stimuli on extracellular matrix architecture and mechanical properties of engineered vessels. Hence, biomimetic systems enable us to optimize chemo-biomechanical culture conditions to regenerate engineered vessels with physiological properties similar to those of native arteries. In addition, this article reviews various bioreactors designed especially to apply axial loading to engineered arteries. This review will also introduce and examine different approaches and techniques that have been used to engineer biologically based vascular grafts, including collagen-based grafts, fibrin-gel grafts, cell sheet engineering, biodegradable polymers, and decellularization of native vessels.  相似文献   

19.
Intestinal morphogenesis and differentiation are dependent on heterotypic cell interactions between embryonic epithelial cells (endoderm) and stromal cells (mesenchyme). Extracellular matrix molecules represent attractive candidates for regulators of these interactions. The structural and functional diversity of the extracellular matrix as intestinal development proceeds is demonstrated by 1) spatio-temporal specific expression of the classically described constituents, 2) the finding of laminin and collagen IV variants, 3) changes in the ratio of individual constituent chains, and 4) a stage-specific regulation of basement membrane molecule production, in particular by glucocorticoids. The orientation/assembly of these extracellular matrix molecules could direct precise cellular functions through interactions via integrin molecules. The involvement of extracellular matrix, and in particular basement membrane molecules in heterotypic cell interactions leading to epithelial cell differentiation, has been highlighted by the use of experimental models such as cocultures, hybrid intestines and antisense approaches. These models allowed us to conclude that a correct elaboration and assembly of the basement membrane, following close contacts between epithelial and fibroblastic cells, is necessary for the expression of differentiation markers such as digestive enzymes.  相似文献   

20.
Role of plasminogen activator-plasmin system in tumor angiogenesis   总被引:6,自引:0,他引:6  
New blood formation or angiogenesis has become a key target in therapeutic strategies aimed at inhibiting tumor growth and other diseases associated with neovascularization. Angiogenesis is associated with important extracellular remodeling involving different proteolytic systems among which the plasminogen system plays an essential role. It belongs to the large serine proteinase family and can act directly or indirectly by activating matrix metalloproteinases or by liberating growth factors and cytokines sequestered within the extracellular matrix. Migration of endothelial cells is associated with significant upregulation of proteolysis and, conversely, immunoneutralization or chemical inhibition of the system reduces angiogenesis in vitro. On the other hand, genetically altered mice developed normally without overt vascular anomalies indicating the possibility of compensation by other proteases in vivo. Nevertheless, they have in some experimental settings revealed unanticipated roles for previously characterized proteinases or their inhibitors. In this review, the complex mechanisms of action of the serine proteases in pathological angiogenesis are summarized alongside possible therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号