首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
§1 引言本文讨论障碍问题有限元近似解的误差估计.用x=(x_1,x_2)表示R~2中的点.设Ω是R~2中的有界区域,它的边界Γ充分光滑.又设f,∈L~2(Ω),g∈H~2(Ω),x∈H~2(Ω),(1.1)这里H~2(Ω)表示Sobolev空间.另外,本文还要用到Sobolev空间W~(m,p)(Ω),以后不再具体说明.下面用和|·|_(m,Ω)分别表示H~m(Ω)中元素的范数和半范,用表示W~(m,p)(Ω)中元素的范数.  相似文献   

2.
函数空间的逼近理论由于在近似方法中的应用而被人们所重视。Di Guglielmo,F.在[1]中研究了空间 W~(m,p)(R~n)(p≥2)的多项式逼近问题。空间 W~(m,p)(Ω)是指具有如下性质的函数 u 组成的集合:W~(m,p)(Ω)≡{u∈L~p(Ω):D~αu∈L~p(Ω),0≤|α|≤m,其中 D~αu 是意义下的广义(或广义函数意义下的)偏导数},其中α={α_1,…,α_n}是非负整数α_j 的一个 n 重组,|α|=sum from j=1 to n α_j,D_j=(?)/((?)x)(对于1≤j≤n),D~α=D_1~(α_1)…D_n~(α_n).Ω为有界或无界区域。范数为‖u‖_m~p,p=sum from 0≤|α|≤m ‖D~αu‖_p~p, 1相似文献   

3.
令S_α(f)是f的本性Lusin平方函数.若f属于Campanato空间f∈L~(p,β),1p∞,-n/p≤β1,我们证明了,若存在一点x_0∈R~n,使得S_α(f)(x_0)∞,则S_α(f)(x)在Rn上几乎处处有限,且存在常数C,使得‖S_α(f)‖_(Lp,β)≤C‖f‖_(Lp,β).类似结论对本性Littlewood-Paley g-函数也成立.  相似文献   

4.
本文通过引进W~(m,p)(Ω)的L型内积,得到W~(m,p)(Ω)中有界线性泛函的一种表现形式.  相似文献   

5.
本文所讨论的函数都以1为周期,我们用L_(W~∞_(0.1))表示由Walsh函数张成的L_(W~∞_(0.1))的子集的闭包。用X=X[O.1)表示空间L_((0.1))~q(1≤q<∞)或L_(W~∞_(0.1))中的一个。f∈X[O,1]的范数表为‖f‖x。  相似文献   

6.
1 预备知识 定义1 记W0k,p(x)(Ω)的共轭空间为W-k,p'(x)(Ω),定义W-k,p'(x)(Ω)的范数如下: ‖ G ‖-k,p'=sup(|G(f)|)/(‖f‖k,p):f∈W0k,p(x)(Ω).  相似文献   

7.
在变指数Lebesgue空间Lp(x)(Ω)和变指数Sobolev空间Wk.p(x)(Ω)基本理论体系上,研究了下面的p(x)-Laplacian问题:{-div[ (d+ ▽|u|2)p(x)/2-1▽u]=-λ|u|p(x)-2u+f(x,u),x∈Ωu=0,x∈(δ)Ω其中Ω是(R)N中的具有光滑边界的有界区域,...  相似文献   

8.
考虑多孔介质方程的Dirichlet问题,讨论在解的Blow-up时间T有限的情况下,当初值出现一个小的扰动函数h(x)时,相应方程的Blow-up时间Th随之发生的变化情况,证明了Blow-up时间|T-Th|和‖h‖L1(Ω)之间连续相依性的结果,其中QT=Ω×(0,T),0≤u0(x)∈L∞(Ω),h(x)∈L∞(Ω),Ω(∩)RN是一有界区域,其中对指标m,p的限制满足1<m<p.  相似文献   

9.
用条件(C)方法证明了R3中的有界开区域Ω上的Brinkman-Forchheimer方程ut=γΔu-au-b|u|u-c|u|βu-▽p+f当外力项f满足:∫-t∞eδs‖f(s)‖2ds∞时在空间L~2(Ω)和H~1o(Ω)上的拉回D-吸引子的存在性,其中0δ≤a/a+1.  相似文献   

10.
在变指数Lebesgue空间L~(p(x))(Ω)和变指数Sobolev空间W~(k,p(x))(Ω)理论框架下,研究了下面的p(x)-Laplacian Dirichlet问题:{-div[(d+|▽u|~2)~(p(x)/2-1)▽u]=f(x,u),x∈Ω:u=0,x∈Ω其中ΩR~N是有界区域,p(x)1,p(x)∈C(Ω),d0为常数.利用p(x)-Laplace算子-div[(d+|▽u|~2)~(p(x)/2-1)▽u]的性质及喷泉定理证明了这个问题无穷多个弱解的存在性.  相似文献   

11.
实数阶Соболев空间有限元插值性质   总被引:1,自引:1,他引:0  
Ciarlet,P.G.和Raviart,P.A.在1972年给出了整数阶空间H~m(Ω)的有限元插值性质.本文在此基础上,给出了实数阶空间H~(?)(Ω)(s是实数)的有限元插值性质.即‖u-Πu‖_s(?)≤Ch~(?)‖u‖_(?),这里S_2≥S_1.  相似文献   

12.
设T是复Hilbert空间H中的稠定闭算子,用ρ_(S-F)(T),C,ρ_(S-F)~s(T)分别表示T的半—弗雷德霍姆域及该域中T—正则点,T—奇异点的集合,用S表示T的Moore-Penrose逆。作者以(M—P)逆为工具证明了:如果O∈ρ_(S-F)(T),G={μ∈C:0<|μ|<‖S‖~(-1),那么Gρ_(S-F)~r(T)。因此ρ_(s-f)(T),ρ_(S-F)~r(T)均为开集,而ρ_(S-F)~s(T)在ρ_(S-F)(T)中无极限点。  相似文献   

13.
有界核参数型Marcinkiewicz积分交换子的端点估计   总被引:1,自引:0,他引:1  
得到了当函数b(x)∈BMO,Ω满足有界核条件时参数型Marcinkiewicz积分交换子μρΩ,b(f)(x)的端点估计|{x∈Rn:|μρΩ,b(f)(x)|>λ}|≤c‖b‖BMO∫Rn|f(x)|λ(1+log+(|f(x)|λ)),其中ρ>1且μρΩ,b(f)(x)=(∫∞0|1tρ∫|x-y|≤tΩ(x-y)|x-y|n-ρ[b(x)-b(y)]f(y)dy|2dtt)1/2.  相似文献   

14.
参数型Marcinkiewicz积分算子定义为: μρΩ(f)(x)=(∫∞0|1/tρ∫|x-y|≤t Ω(x-y)/|x-y|n-ρf(y)dy|2dt/t)12,其中Ω是零次齐次函数,且在单位球面上平均值为零. 对于f∈BMO, 证明了当Ω∈ L(logL)γ(Sn-1)(γ>2)以及某类Dini型条件时,[μρΩ(f)]2要么几乎处处无限要么几乎处处有限的, 且当[μρΩ(f)]2几乎处处有限时,‖[μρΩ(f)]2‖BLO(Rn)≤C‖f‖2BMO(Rn).  相似文献   

15.
设Ω是C中的双曲型区域,λ_Ω(z)|dz|为其上的双曲(Poincar(?))度量。令δ_Ω(z)=dist(z,Ω)及[δ_Ω(z)]~(-1)·|dz|为Ω上的拟双曲度量。又置A_λ~∞(Ω)和A_δ~∞(Ω)分别是具有范数‖f‖_λ=|f(z)|·[λ_Ω(z)]~(-1)<∞和‖f‖_δ|f(z)|δ_Ω(z)<∞的Ω上解析函数f之全体。在本文,一致完全域Ω,即满足C(Ω)=infλ_Ω(z)δ_Ω(z)>0的域Ω被研究,进而A_λ~∞(Ω)与A_δ~∞(Ω)中的函数被刻划;最后就单连通区域Ω上的A_λ~∞(Ω)=A_δ~∞(Ω)中的自由插值问题也被考虑。  相似文献   

16.
得到了Ω满足Dini型条件时Marcinkiewicz积分交换子μΩ,b(f)的双权弱型估计u({x∈Rn:μΩ,b(f)(x)>λ})≤CtC∫pRn|f|pvdx,其中(u,v)满足(|1Q|∫Qurdx)1/rp‖v-1/p‖c,Q≤C<∞.  相似文献   

17.
令M~n是n维单位球空间S~(n+p)(n≥3)中的紧致k-极值子流形(1≤kn/2),证明当(∫_(M~n)ρ~ndv)2/nC时,|A|~2=nH~2且M~n全脐,其中C依赖于n,p,M~n.记ρ~2=|A|~2-nH~2,H和|A|~2分别表示Mn的平均曲率和第2基本型模长平方.  相似文献   

18.
对任意的正整数n,著名的伪Smarandache函数Z(n)定义为最小的正整数m使得n|m(m+1)/2,即Z(n)=min{m:n|m(m+1)/2,m N}.对任意的正整数n,算术函数Ω(n)定义Ω(1)=0,当n1且n=p1α1·p2α2...pkαk为n的标准分解式时,Ω(n)=α1p1+α2p2+…+αkpk.利用初等方法和解析方法研究了伪Smarandache函数Z(n)与算术函数Ω(n)的混合均值问题,并得到一个较强的渐近公式.  相似文献   

19.
本文在R~m(m≥2)的有界凸区域Ω上考虑退缩椭圆型方程其中α_lj(x)=αjl(x)∈c(Ω)且对x∈Ω及ξ=(ξ_1,…,ξ_m)∈R~m\{0}有αlj(x)ξ_1ξ_1≥λ(x)|ξ|~2≥0,λ~(-1)(x)∈L_s(Ω)(s>m)。设Ω的边界∑∈A~(2)(意义见[1]γ,  相似文献   

20.
考虑下面非线性椭圆型方程非局部边值问题。(1)Lu=- / x_2(a_(ij)(x)( u/ x_2)=f(x,u(x),Du(x),x∈Ω),u|_( Ω)=C(待定常数),- integral from n=( Ω) a_(ij)(x)( u/ x)cos(n,x_i)ds=0,在 f 的某些假设下,本文证明了解的存在性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号