首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文对带界面层单向纤维增强金属基材料的热机械荷联合作用下的应力场进行了分析计算,并获得了其应力分布情况。  相似文献   

2.
弱界面颗粒增强复合材料的有效弹性模量   总被引:3,自引:0,他引:3  
采用线弹簧型弱界面模型,研究弱界面对复合材料宏观弹性模量的影响。首先利用弱界面球形夹杂的弹性解,获得单夹杂内部的平均应力和平均应变;然后考虑夹杂之间的相互作用,分别采用微分法、自洽理论和Mori-Tanaka方法,求得弱界面复合材料的宏观弹性模量,并对上述各种方法所得结果作一比较。  相似文献   

3.
基于可以考虑界面层效应和界面剪应力作用的三层组合圆筒模型,对纤维增强陶瓷材料分别得到沿纤维方向承受拉伸载荷和热降落引起的应力表达式,包括界面出现剪切滑移和裂纹在基体中扩展后的应力再分配及应力集中。在此基础上建立了可以考虑界面层和热应力影响的基体开裂临界应力求解方程。在不考虑界面层和热应力的条件下其可退化为著名的ACK解。最后以材料SiCf/SiCm为例,计算并讨论了界面层和热应力对该临界载荷的影响,得到的理论预估值与实测值有较好的一致。  相似文献   

4.
在弹性圆筒理论和剪滞模型基础上提出了考虑界面相与界面层效应的力学简化模型。据此对纤维增强陶瓷复合材料完成了I型加载条件下的应力分析,它有以下特点:①引进界面层,各项分析所得结果均含有界面层材料性能及几何参量等信息,因而能更好地用于材料设计与界面调控工艺;②不仅给出界面剪应力,还可给出界面正应力(或剥离力),因而更适用于分析界面分离,界面脱粘,基体开裂临界应力和纤维桥联增韧效应  相似文献   

5.
复合材料重点研究领域——界面层   总被引:1,自引:0,他引:1  
  相似文献   

6.
相间结合状态对复合材料的力学性质有至关紧要的影响。本文引入三个参数描写相间结合状态,按照本构等效的原理和方法导出包含相间结合状态参数的纤维增强复合材料弹性常数的组分计算公式。文章建设用双试样或三试样设计方法将这些公式用于组分设计较精确的计算。  相似文献   

7.
界面强度对纤维增强复合材料宏观韧性的影响   总被引:3,自引:0,他引:3  
 研究不同的界面强度对纤维增强复合材料宏观韧性的影响。考虑材料的细观非均匀分布,采用数值试验的方法模拟了带缺口的纤维增强复合材料试件在单轴拉伸情况下的损伤破裂过程。结果表明,在满足界面应力传递所需强度的前提下,界面强度对复合材料宏观韧性影响很大,复合材料的宏观韧性随界面强度的提高而降低。且在较弱界面纤维增强复合材料破坏时,可以观察到界面脱粘、裂纹偏折、纤维桥联和拔出等现象。  相似文献   

8.
根据剪滞理论,研究了低延伸层已发生破坏(首次破坏)及出现层间界面破坏时的单向层间混杂叠层复合材料的应力重分布问题,首次获得了高延伸各单层的应力集中因子、脱层长度与层间界面剪切强度的关系,所求得的理论脱层长度得到了实验的证实。  相似文献   

9.
用边界元方法对横向载荷作用下纤维增强复合材料界面的滑移进行分析。通过离散边界,首先分别得到两组纤维物和基体的线性代数方程,然后结合界面条件可以导出最终的系统方程,其中界面的模拟采用弹簧阻力模型。给出的数值算例表明所提出的方法是有效的。  相似文献   

10.
石墨纤维增强铝基复合材料的界面结合   总被引:1,自引:0,他引:1  
金属基复合材料中存在着各种类型的界面结合。文中以电子能量损失谱的广延精细结构分析法,研究了石墨纤维和铝基体间的物理结合;以电子能量损失谱的化学成分定量分析法证明了石墨纤维和铝基体间由于碳原子的扩散而形成的扩散结合。同时还利用透射电子显微镜的形貌观测、电子衍射分析和高分辨电子显微术研究了界面反应产物的形貌和分布,并探讨了复合工艺参数对界面结合的影响机理。  相似文献   

11.
纤维增强复合材料弹性常数测定的平面声波相速法研究   总被引:1,自引:0,他引:1  
本文把纤维增强复合材料视为宏观均匀正交各向异性物体,应用平面声波的Christoffel方程求出平面声波的相速度与各弹性常数之间的关系式,若以实验方法测得平面声波的相速度,则可用这些关系式求出各弹性常数。作者根据这个原理,用实验方法测定了钢、玻璃钢、玻璃纤维——环氧、碳纤维——环氧四种材料的弹性常数,并与共振法进行比较。文末提出了此方法的某些特点,以及改进实验的设想。  相似文献   

12.
以弹塑性力学理论,断裂力学理论及非线性有限元理论为基础,根据材料实验和观察的现象及数据,采用有限元分析方法,建立了树枝状非连续界面相有限元计算模型,分析碳/铝复合材料界面反应产物对复合材料力学性能的影响,阐述了非连续界面影响材料强度的机理,并将该界面细观的不连续结构和复合材料宏观的力学性能联系起来。  相似文献   

13.
水悬浮法制备玻璃纤维/聚氯乙烯复合材料的研究   总被引:2,自引:0,他引:2  
阐述了水悬浮法制备纤维增强热塑性树脂基复合材料的主要优点,着重研究了用水悬浮法制备玻璃纤维增强聚氯乙烯复合材料的工艺技术和工艺配方以及用该方法制备的复合材料的性能.并研究了水悬浮法制备GF/PVC复合材料的界面层设计及其对材料性能的影响  相似文献   

14.
超前支护的均一化横观各向同性弹性模型   总被引:2,自引:0,他引:2  
超前支护(包括管棚和小导管注浆)是隧道开挖中保持地层稳定及控制其变形的重要手段,在隧道开挖模拟分析中需要妥善予以考虑。已有的分析模型一般是提高管棚和小导管注浆影响范围内的土体粘聚力和变形模量,或是分别模拟浆体和钢管。前者力图从整体效果上模拟超前支护对围岩的加强作用,但参数确定过于依赖经验,存在一定的随意性;后者如实模拟体系的构成,但大大增加了模型的复杂程度。如何采用既简单合理又能考虑其整体效应的模型是超前支护数值模拟的研究重点。为此,本文建议了一个均一化的横观各向同性弹性模型,研究了超前支护的平均弹性性质,并在此基础上提出了简化模型,该模型能够用来分析钢管的间距、管径、倾角等重要影响因素。最后,本文对某隧道开挖进行了三维有限元数值模拟,验证了所提模型的有效性。  相似文献   

15.
碳纤维增强水泥复合材料是一种集结构和功能于一体的新型材料,与普通水泥比较,它高强、导电,对温度和应力敏感,具有电磁屏蔽等特征,介绍了碳纤维增强水泥复合材料的制备方法、性能、应用及其最新研究进展,着重展望了其在功能材料方面的研究应用前景。  相似文献   

16.
振动阻尼和力学性能是节能环保麻纤维增强复合材料推广应用于高铁、汽车等运载工具车身时需要考虑的重要和关键技术指标.为此,本文对洋麻纤维增强聚丙烯复合材料进行了拉伸力学性能试验和悬臂梁模态试验,得到了复合材料的拉伸性能和振动阻尼特性参数(固有频率和阻尼比),并探讨了纤维含量对复合材料力学性能和悬臂梁固有频率以及阻尼比的影响.结果表明:随着纤维含量的增加,复合材料的断裂伸长率逐渐降低,弹性模量和拉伸强度均呈增加趋势.同时,复合材料的悬臂梁固有频率随着纤维含量的增加而增加.然而,复合材料悬臂梁的阻尼比呈现先增加后降低的趋势,当纤维质量分数为10%时,阻尼比达到最大值为0.093,与纯聚丙烯相比,提高了20.8%.复合材料悬臂梁二阶阻尼比均高于一阶阻尼比,表明振动幅值影响麻纤维增强树脂基复合材料的阻尼性能.  相似文献   

17.
碳纤维水泥基材料的温阻效应及其测试方法   总被引:2,自引:0,他引:2  
对碳纤维水泥基材料(CFRC)进行的两极法和四极法的对比测试研究表明,两种方法都能得到稳定的电阻值;但两极法的测试结果包含了测试电极的电阻和电极与CFRC材料之间的接触电阻,难以准确反映CFRC材料的真实电阻值;采用四极法测试可消除电极电阻和接触电阻.同时还研究了不同碳纤维掺量(0.4%和1.O%)的CFRC材料的温阻效应.结果表明,在-10-60℃的温度范围内,CFRC材料的电阻率随温度的升高而减小,灵敏度随着碳纤维掺量的增加而减小.  相似文献   

18.
基于广义微极磁热弹模型讨论了两微极弹性固体介质平面界面上耦合横向和微旋转波的反射与折射问题.利用两微极弹性固体平面分界面上位移和应力连续条件,建立了反射与折射波振幅的线性系统方程.数值计算给出各类反射、折射波振幅随耦合横向和微旋转波入射角的变化关系曲线.研究了热松弛时间对反射和折射热波、纵向位移波、耦合横向和微旋转波的振幅比的影响.结果表明,热松弛时间对热波、纵向位移波影响显著,而对耦合横向和微旋转波影响很小.  相似文献   

19.
剑麻增强氰乙基化木复合材料的研究   总被引:2,自引:0,他引:2  
报道了一种全天然植物纤维复合材料。该材料是以塑化的天然植物纤维(木粉)作为基体树脂,以天然植物纤维(剑麻)作为增强材料。通过氰乙基化反应,使木粉转化成为热塑性材料,再与短切剑麻纤维混合,热压制得植物纤维增强塑化植物纤维基复合材料。这种全天然纤维复合材料不仅具有与植物纤维增强传统聚合物基复合材料相似的性能,而且价廉、环境友好。  相似文献   

20.
玻纤增强热塑性树脂基复合材料的界面改性   总被引:1,自引:0,他引:1  
综述玻璃纤维增强热塑性树脂基复合材料及其界面优化的国内外研究现状.当前改进界面相容性的方法,主要包括树脂基体的改性,如等离子体、表面接枝、玻璃纤维偶联剂涂覆、浸润剂浸润等表面处理.在改善界面性能的诸多方法中,对玻璃纤维进行表面处理工艺比较简单,且随时可调整浸润剂配方和加入其他助剂,如改性聚烯烃,可满足生产的需要.此种方法较适合大规模工业生产,是最具有发展前景的改性方法之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号