首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C Scholtissek 《Experientia》1987,43(11-12):1197-1201
With regard to molecular epidemiology, influenza A viruses belong to the best-studied virus systems. At least two large reservoirs of influenza A viruses have been built up in nature, one in humans and another one in water fowls. The latter one is very heterogenous, consisting of viruses belonging to 13 hemagglutinin (HA) and 9 neuraminidase (NA) subtypes in almost all possible combinations. The segmented structure of the influenza virus genome allows the creation of new influenza strains by reassortment. By replacement of the HA gene of human strains new pandemic viruses can be generated (antigenic shift). The particular structure of the HA enables the human influenza A-viruses to create variants which can escape the immune response of the host (antigenic drift). The nucleoprotein is responsible for keeping those two large reservoirs apart. Mixing of genes of viruses from these two reservoirs seems to happen predominantly by double infection of pigs, which apparently are tolerant for infection by either human or avian influenza viruses. The molecular mechanisms described for influenza viruses can be explained by the particular structure of their genome and their components and cannot be generalized. Each virus has developed its own strategy to multiply and to spread.  相似文献   

2.
Summary Crude coralloid root extract ofCycas revoluta showed significant antiviral activity against viruses of the tomato plant (PVX, PVY, TMV, TAV and TRSV) when applied 24 h before virus inoculation, or when mixed with different virus inocula before virus inocultion, in hypersensitive and systemic hosts. No such inhibition was observed when extract was applied 24 h after virus inoculation. TAV did not show any inhibitory response in a systemic host.Authors are thankful to Dr S. N. Gupta and Dr (Smt.) K. Shukla for their valuable guidance and providing laboratory facilities and U.G.C. for financial assistance.  相似文献   

3.
4.
Like most positive-strand RNA viruses, hepatitis C virus (HCV) forms a membrane-associated replication complex consisting of replicating RNA, viral and host proteins anchored to altered cell membranes. We used a combination of qualitative and quantitative electron microscopy (EM), immuno-EM, and the 3D reconstruction of serial EM sections to analyze the host cell membrane alterations induced by HCV. Three different types of membrane alteration were observed: vesicles in clusters (ViCs), contiguous vesicles (CVs), and double-membrane vesicles (DMVs). The main ultrastructural change observed early in infection was the formation of a network of CVs surrounding the lipid droplets. Later stages in the infectious cycle were characterized by a large increase in the number of DMVs, which may be derived from the CVs. These DMVs are thought to constitute the membranous structures harboring the viral replication complexes in which viral replication is firmly and permanently established and to protect the virus against double-stranded RNA-triggered host antiviral responses.  相似文献   

5.
Generalized immunosuppression: how viruses undermine the immune response   总被引:3,自引:0,他引:3  
Following infection, a virus must battle against the host's immune response. Viruses have developed many ways to escape immune surveillance and downregulate the host's immune response. Some viruses cause a generalized immunosuppression, thereby inhibiting or depressing the immune response towards themselves as well as towards unrelated pathogens. This review will focus on the mechanisms involved in the three main human viral infections causing immunosuppression: measles, human immunodeficiency virus and cytomegalovirus. We will also discuss what has been learned from the extensively studied mouse models of viral-induced immunosuppression: lymphocytic choriomeningitis virus and Rauscher leukemia virus. All of these viruses that induce generalized immunosuppression appear to do so by very similar mechanisms. They hinder antigen presentation to T cells and/or hematopoiesis. We will highlight the similarities in the viral targets as well as present evidence for alternate mechanisms.  相似文献   

6.
Decrease in the susceptibility of embryonic chick neural retina cultures to the multiplication of various viruses was observed with increasing age of the embryo. In contrast the retinal cells supported the multiplication of Sindbis virus irrespective of the age when they were infected with the viral RNA. These results suggest that the restricted multiplication of the viruses observed is due to the modulated inability of the cell to process the adsorbed viruses for subsequent replication.  相似文献   

7.
Summary Decrease in the susceptibility of embryonic chick neural retina cultures to the multiplication of various viruses was observed with increasing age of the embryo. In contrast the retinal cells supported the multiplication of Sindbis virus irrespective of the age when they were infected with the viral RNA. These results suggest that the restricted multiplication of the viruses observed is due to the modulated inability of the cell to process the adsorbed viruses for subsequent replication.  相似文献   

8.
The functioning of a group of cells as a tissue depends on intercellular communication; an example is the spread of action potentials through intestinal tissue resulting in synchronized contraction. Recent evidence for cell heterogeneity within smooth muscle tissues has renewed research into cell coupling. Electrical coupling is essential for propagation of action potentials in gastrointestinal smooth muscle. Metabolic coupling may be involved in generation of pacemaker activity. This review deals with the role of cell coupling in tissue function and some of the issues discussed are the relationship between electrical synchronization and gap junctions, metabolic coupling, and the role of interstitial cells of Cajal in coupling.  相似文献   

9.
10.
Tomato Black Ring Virus (TBRV) like other NEPOviruses posseses two nucleoproteins M and B and two major RNAs, RNA1 and RNA2 respectively distributed in B and M. A new nucleoprotein has just been discovered and comprises one molecule of RNA2 associated with one molecule of RNA3. RNA3 is a small RNA of molecular weight 500,000 d considered to be a satellite RNA. Its level appears to depend on the infection stage, local or systemic. RNA3 is able to modify the relative proportions of nucleoproteins M and B and their respective RNAs. The satellite RNA, might be part of the genome and represent a monocistronic mRNA for protein capsid synthesis. However it seems perhaps more tempting to correlate TBRV-RNA3 with satellite RNA5 of certain strains of Cucumber mosaic virus.  相似文献   

11.
Organization and expression of the poxvirus genome   总被引:19,自引:0,他引:19  
Summary Poxviruses comprise a large group of very complex animal DNA viruses which replicate in the cytoplasm of infected cells. Vaccinia virus, the most studied poxvirus, has a linear, double stranded DNA genome with an approximate molecular weight of 120×106 (180 kilobase pairs). The two strands of the DNA molecule are naturally cross-linked at both termini. In addition, the vaccinia virus genome contains very long inverted terminal repetitions of approximately 10 kilobase pairs which are further characterized by the presence of direct tandem repeats of a 70-base-pair sequence arranged in two blocks of 13 and 17 copies, respectively. A central region of the genome is highly conserved between different orthopoxviruses. In contrast, the ends are hypervariable and may contain extensive deletions and complex, symmetrical sequences rearrangements. Vaccinia virus gene expression is divided into two stages. Early in infection, RNA complementary to one half of one strand-equivalent of the genome is transcribed within subviral particles by the virion-associated RNA polymerase. Later in infection, after DNA replication, RNA complementary to one entire strand-equivalent is transcribed. RNA made late in infection is very heterogeneous in length and a large fraction of it contains self-complementary sequences. Late genes are clustered near the central region of the genome. Vaccinia virus mRNAs do not appear to be synthesized by a splicing mechanism.  相似文献   

12.
Antiviral activity of glycyrrhizic acid   总被引:1,自引:0,他引:1  
Summary Glycyrrhizic acid inhibits the growth of several DNA and RNA viruses in cell cultures and inactivates Herpes simplex 1 virus irreversibly.This work has been supported by a grant of Consiglio Nazionale delle Ricerche (progetto finalizzato Virus) Rome.  相似文献   

13.
14.
The functioning of a group of cells as a tissue depends on intercellular communication; an example is the spread of action potentials through intestinal tissue resulting in synchronized contraction. Recent evidence for cell heterogeneity within smooth muscle tissues has renewed research into cell coupling.Electrical coupling is essential for propagation of action potentials in gastrointestinal smooth muscle.Metabolic coupling may be involved in generation of pacemaker activity. This review deals with the role of cell coupling in tissue function and some of the issues discussed are the relationship between electrical synchronization and gap junctions, metabolic coupling, and the role of interstitial cells of Cajal in coupling.  相似文献   

15.
The mechanisms by which a small percentage of HIV-1 infected individuals known as elite suppressors or controllers are able to control viral replication are not fully understood. Early cases of viremic control were attributed to infection with defective virus, but subsequent work has demonstrated that infection with a defective virus is not the exclusive cause of control. Replication-competent virus has been isolated from patients who control viral replication, and studies have demonstrated that evolution occurs in plasma virus but not in virus isolates from the latent reservoir. Additionally, transmission pair studies have demonstrated that patients infected with similar viruses can have dramatically different outcomes of infection. An increased understanding of the viral factors associated with control is important to understand the interplay between viral replication and host control, and has implications for the design of an effective therapeutic vaccine that can lead to a functional cure of HIV-1 infection.  相似文献   

16.
MicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes.  相似文献   

17.
Summary Halocyamine A, an antimicrobial substance isolated from hemocytes of the solitary ascidianHalocynthia roretzi, inhibited in vitro the growth of fish RNA viruses (infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus). Pretreatment of RNA virus with halocyamine A reduced the infectivity of the virus toward host cells. The growth of marine bacteria,Achromobacter aquamarinus andPseudomonas perfectomarinus, was also inhibited by halocyamine A but that ofAlteromonas putrefaciens andVibrio anguillarum was not. These results suggest that halocyamine may have a role in the defense mechanisms ofH. roretzi against marine viruses and bacteria.  相似文献   

18.
The cellular prion protein PrP(C)/CD230 is a GPI-anchor protein highly expressed in cells from the nervous and immune systems and well conserved among vertebrates. In the last decade, several studies suggested that PrP(C) displays antiviral properties by restricting the replication of different viruses, and in particular retroviruses such as murine leukemia virus (MuLV) and the human immunodeficiency virus type 1 (HIV-1). In this context, we previously showed that PrP(C) displays important similarities with the HIV-1 nucleocapsid protein and found that PrP(C) expression in a human cell line strongly reduced HIV-1 expression and virus production. Using different PrP(C) mutants, we report here that the anti-HIV-1 properties are mostly associated with the amino-terminal 24-KRPKP-28 basic domain. In agreement with its reported RNA chaperone activity, we found that PrP(C) binds to the viral genomic RNA of HIV-1 and negatively affects its translation. Using a combination of biochemical and cell imaging strategies, we found that PrP(C) colocalizes with the virus assembly machinery at the plasma membrane and at the virological synapse in infected T cells. Depletion of PrP(C) in infected T cells and microglial cells favors HIV-1 replication, confirming its negative impact on the HIV-1 life cycle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号