首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants, which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea. In this study, by field investigation and pot trial, we found that mobility of arsenic and cadmium in tea plants was low. Most arsenic and cadmium absorbed were fixed in feeding roots and only small amount was transported to the above-ground parts. Distribution of arsenic and cadmium, based on their concentrations of unit dry matter, in tea plants grown on un-contaminated soil was in the order: feeding roots〉stems=main roots〉old leaves〉young leaves. When tea plants were grown on polluted soils simulated by adding salts of these two metals, feeding roots possibly acted as a buffer and defense, and arsenic and cadmium were transported less to the aboveground parts. The concentration of cadmium in soil significantly and negatively correlated with chlorophyll content, photosynthetic rate, transpiration rate and biomass production of tea plants.  相似文献   

3.
张冬艳  Yu  Fang  Bai  Fengwu  An  Lijia 《高技术通讯(英文版)》2006,12(4):446-448
The effects of initial sucrose concentration, nitrate to ammonium ratio, total N concentration and phosphate concentration in medium on cell growth and isocamptothecin A and B synthesis by suspension call culture of Camptotheca acuminata were investigated in 250 mL shake flasks. 30 g L^-1 sucrose concentration was beneficial to secondary metabolites synthesis. The cell growth and metabolites synthesis were also affected by the ratio of NO3^-/NH4^+ , and nitrate was tavourable for cell growth. The maximum dry weight was achieved when nitrate was used as the sole N souree. The effect of total initial N on the cell cultures was also investigated with NO3^-/NH4^+ ratio of 1 : 2. The final dry cell weight was similar throughout culture period and 50 mM initial N was favourable for secondary metabolite synthesis. 50 mM initial phosphate concentration facilitated both cell growth and secondary metabolites synthesis.  相似文献   

4.
<正> 1. Three sepcies of roses, Gruss an Berlin, Super Star and John Strong were irradiated with 2,4,6 and 8 Kr and then the growth of the cuttings’ callues, stems, roots and leaves and their flowering were investigated. Results showed that all thses organs were apparently inhibited when the itradiation was done with more than 6Kr.2 . Half a year after irradiation (optimum dose 4Kr), mutations in flower colours have been observed in plants irradiated in thier seedling (grown out of cuttings of Gruss an Berlin and John Strong) stage.3 . When the dose was 4Kr, irradiated seedlings would produce more flower colour mutations than plants grown out of irradiated cuttings.  相似文献   

5.
To avoid unfavorable environmental condi- tions, Scrippsiella trochoidea is capable of forming a resting cyst in the process of growth. In the present study, we investigated the effects of nitrate and ammonium on the growth and encystment of S. trochoidea. We incubated S. trochoidea in modified f/2 media without nitrogen and silicate in flasks. The flasks were divided into two groups. Nitrate was added as a nitrogen source in the first group, and ammonium was added in the second group. The concentrations of the nitrogen compounds were 0, 10, 30, 60, and 90 μmol/L. The results indicate that NO3--N favors cell growth, and the cultures with a higher concentration of NO3--N were ineffective at forming cysts. In contrast, NH4+-N promoted cell growth and cyst formation. At similar concentrations as NO3--N, NH4+-N had a toxic effect on cell growth and increased the cyst formation ratio. Thus, the NH4+-N concentration is an important factor for controlling encystment. We believe that the impact of NH4+-N in inducing cyst formation may be a useful feedback mechanism in ecological systems.  相似文献   

6.
To increase the expression level of CryIA(c) gene in transgenic plants, a plant expression vector pBinMoBc carrying the CryIA(c) gene under control of chimeric OM promoter and Ω factor was constructed. As a control, pBinoBc carrying the CryIA(c) gene with the CaMV 35S promoter was also constructed. The vectors were transferred into tobacco plants respectively via Agrobacterium-mediated transformation. ELISA assay showed that the expression level of the CryIA(c) gene in pBinMoBc transgenic tobacco plants was 2.44-times that in pBinoBc transgenic tobacco plants, and it could be up to 0.255% of total soluble proteins. Bioassay showed that pBinMoBc transgenic tobacco plants had more notable insecticidal effect than pBinoBc transgenic tobacco plants. The above results showed that the chimeric OM promoter was a stronger promoter than CaMV 35S promoter that was widely used in plant genetic engineering, and this is very useful in pest-resistant plant genetic engineering.  相似文献   

7.
δ-OAT, ornithine-δ-aminotransferase, is the key enzyme involved in proline biosynthesis. In this study the Arabidopsis δ-OAT gene was transferred into rice (Oryza sativa L. ssp japonica cv. Zhongzuo 321), whose successful integration was demonstrated by PCR and Southern blot analysis. The over-expression of the gene in transgenic rice was also confirmed. Biochemical analysis showed that, under salt or drought stress conditions, proline contents in the leaves and roots in transgenic rice plants were 5- to 15-fold of those in non-transgenic controls. Under stress conditions, germinating rate of transgenic lines is higher than that of controls. Although the growth of rice plants tested were more and more retarded with the increasing of NaCI concentration, the transgenic plants grow faster compared to the controls under the same stress condition. Meanwhile, the resistance to KCl and MgSO4 stresses was also found enhanced in transgenie rice. Furthermore, the over-expression of δ-OAT also improved the yield of transgenic plants under stress conditions. The average yield per plant of transgenic lines increases about 12%--41% more than that of control line sunder 0.1 mol/L NaCI stress. These data indicated that the over-expression of δ-OAT, with the accumulation of proline, resulted in the enhancement of salt and drought tolerance and an increase of rice yield, which is of significance in agriculture.  相似文献   

8.
In pot experiments at Xichang,China,during 1989~1994,visual senescencesymptoms and associated changes in constituent contents and activities of leaves of fababean(Vicia faba L.)were compared in respones to flower removal.The leaves from upper,middle and lower positions were sampled six times during reproductive developmentphase.At 70 DAP flower removal had caused 37%~189% and 82%~197% increase ofgreen leaf area and green leaf dry weight per plant respectively.Flower removal led to asignificant increase in the chlorophyll,soluble sugar and protein contents and the catalaseactivity.The leaf cell relative electroconductivity of those plants was maintained at a lowerlevel,relative to the control,during the late growing stage.These results certainly impliedthat the leaves of flower removal plants were still fully functional at a very late growingstage,consequently the plants increased many new branches per plant.  相似文献   

9.
Na~ /H~ antiporters (NHX) are ubiquitous transmembrane proteins that play a key role in salt tolerance of plants. In this study, the sequence of 3 Arabidopsis NHX gene (AtNHX2―4) were compared with other AtNHX members. Putative cis-elements analysis identified elements that have been associated with stress responses. The activities of the promoters AtNHX2―4 were studied in transgenic plants carrying corresponding promoter-β-glucuronidase (GUS) fusions. The AtNHX2 promoter-GUS analysis indicated that AtNHX2 was expressed in constitutive pattern with high GUS activity in roots and leaves. AtNHX2 promoter activity was not up-regulated by NaCl or abscisic acid (ABA), in contrast to the AtNHX1 promoter which was previously studied. The AtNHX3 and AtNHX4 promoters showed tissue-specific activities. Strong GUS activity was detected in roots and vascular bundles of the stele in plants carry-ing an AtNHX4 promoter-GUS fusion, and GUS activity increased under salt stress suggesting a func-tion related to salt tolerance. Transgenic plants carrying the AtNHX3 promoter-GUS fusion showed strong GUS activity in petals, stamens and tops of siliques, suggesting a possible role of AtNHX3 in flower and seed development. Results of histochemical analysis suggested that AtNHX2―4 are involved in divergent functions and are differentially regulated under abiotic stress. The structure of AtNHX4 was predicted to include 12 transmembrane regions and a NHX domain. Overexpression of AtNHX4 in Arabidopsis transgenic lines confers greater salt tolerance than in wild type plants. These results suggest that AtNHX4 may encode a putative vacuolar NHX that plays an important role in salt tolerance.  相似文献   

10.
Removal of NOx(DeNOx, NOx is the total of NO and NO2) from flue gas by radical injection has been investigated .the discharge characteristics were examined and the steady streamer corona was acquired hy adjusting the nozzle gases properly. It was Found that an increase in the voltage resulted in a decrease in the NO concentration and the concentration of the NO2 increased at tow voltages but decreased as the voltage rose to a certain level. The DeNOx efficiency increased as the applied voltage rose and reached a maximum of 70% when the voltage approached the breakdown voltage. The hypothetical mechanism of NOx removal suggested that the radicals formed in the discharge process converted the NO and NO2 into acidic species. The Monte Carlo method was used to calculate the rate coefficients and the productivity of the radicals, and then the concentrations of both NO and NO2 and the DeNOx effielencies were calculated with chemical kinetics. The calculated DeNOx efficiencies were coalparable with the experimental DeNOx efficiencies at low voltages, but were lower at high voltages.  相似文献   

11.
The effect of nitrogen form on pH and concentration of soluble iron (Fe) in leaf apoplast was investigated in hydrophonically grown sunflower plants (Helianthus annuus L. cv. Frankasol), and the mechanism underlying the improved Fe nutrition by ammonium (NH4) supply was also elucidated. Ammonium supply ameliorated Fe nutrition of plants grown without Fe through decreasing apoplastic pH and increasing soluble Fe concentration in apoplastic fluid of young leaves. The soluble Fe concentration in apoplastic fluid and cell sap of young leaves, and xylem exudates of NH4 fed-plants was higher than that of nitrate (NO3) fed-plants, and no typical Fe-deficiency chlorosis in young leaves was observed in NH4, fed plant without Fe supply. The apoplastic pH was 6.15 and 5.94 in young leaves of Fe-deficient plants fed respectively with NO3 and NH4, while in Fe-sufficient plants, the apoplastic pH was 6.43 with NO3, and 5.50 with NH4 supply. In primary leaves, the apoplastic pH was around 6.25 irrespective of nitrogen form and Fe supply. The pH of xylem exudate was 5.72 in Fe-deficient plants fed with NO3 and 5.49 with NH4. Iron nutrition increased the pH of xylem exudate by 0.27 and 0.16 unit under NO3 and NH4 supply respectively.  相似文献   

12.
The effects of ammonium (NH4+-N ) and nitrate ( NO3--N ) were examined on Fe fractions and FeCN (ferricyanide) reductase activity in intact root tips (0—3 cm) of young maize (Zea mays L. cv. Lenz) in solution culture by using short-term experiment under controlled Fe deficiency conditions (containing high HCO3- concentration in preculture solution). The results showed that Fe(Ⅱ) concentrations in root tip apoplast of maize were only 20—40 nmol/g FW which accounted for 7%—13% of total Fe. Most of Fe in root tips existed as Fe(Ⅲ) compounds. Imposition of the roots to NH4+-N or NO3--N for 60 min led to an increase of Fe(Ⅱ) in root tip apoplast. NH4+-N led to an increased concentration of Fe(Ⅱ) and exchangeable Fe (Fe(Ⅱ) and Fe (Ⅲ)) in root tips, while NO3--N increased FeCN reductase activity. The relationship between pH and Fe fractions, FeCN reductase activity was also discussed.  相似文献   

13.
The effects of ammonium (NH+4- N ) and ni trate (NO-3- N ) Were examined on Fe fractions and FeCN (ferricyanide) reductase activity in intact root tips (0-3 em)of young maize (Zea mays L. cv. Lenz) in solution culture by using short-term experiment under controlled Fe deficiency conditions (containing high HCO-3 concentration in preculture solution). The results showed that Fe( II ) concentrations in root tip apoplast of maize were only 20-40 nmol/g FW which accounted for 7%-13% of total Fe. Most of Fe in root tips existed as Fe(Ⅲ) compounds. Imposition of the roots to NH+4 - N or NO-3 - N for 60 min led to an increase of Fe( II ) in root tip apoplast. NH+4 - N led to an increased concentration of Fe( II ) and exchangeable Fe (Fe( II ) and Fe (III)) in root tips, while NO-3 - N increased FeCN reductaseactivity. The relationship between pH and Fe fractions,FeCN reductase activity was also discussed.``  相似文献   

14.
本试验发现磷对异果山绿豆结瘤、固氮和生长都起到极其重要的作用.含磷者结瘤多、根瘤发育正常固氮活性高,植株生长良好;而缺磷者根瘤小而白、植株生长差.缺磷钾时,少量化合态氮[0.61mM Ca(NO_3)_2或1.87mM NH_4Cl]对植物生长结瘤都引起有害的作用.在磷钾水平一致时,低水平化合态氮〔0.61mM Ca(NO_3)_2或1.87mM NH_4Cl〕对异果山绿豆结瘤固氮及生长都是有益的;而中水平氮〔3.05mM Ca(NO_3)_2或9.35mM NH_4Cl〕则不利;高水平氮〔6.1m MCa(NO_3)_2或18.7mM NH_4Cl〕有明显的抑制作用.植株含氮量随着化合态氮的水平提高而降低.  相似文献   

15.
不同形态氮素营养对彩椒生理特性的影响   总被引:4,自引:0,他引:4  
比较了三种形态氮素营养(NH4^ -N;NO3^--N;NH4^ -N:NO3^--N=1:1)对彩椒不同生长发育时期有关生理特性的影响,结果表明,彩椒发棵期之前(含发棵期),施用NH4^ -N NO3^--N混合态氮素,效果最好,植株全氮含量、叶片叶绿素含量、净光合速率的测定值最高,硝酸还原酶活性仅次于NO3^--N处理组;同期若单施氮素,则彩椒更易吸收和利用NH4^--N;但发棵期后,单施NO3^--N,各指标的测定值明显高于其它处理。  相似文献   

16.
磷对水生植物菱及睡莲叶生理活性的影响   总被引:14,自引:0,他引:14  
研究了不同磷营养水平对睡莲(Nymphaea tetragona Georgi.)和菱(Trapa bispinosa Roxb.)叶生理活性的影响。结果表明:随磷营养水平的升高,叶内的无机磷含量升高,叶绿素含量基本呈下降趋势,Chla/Chlb升高;对多肽组分无明显影响;光合速率、呼吸速率、菱叶的ATP含量、睡莲叶的有机磷含量和PSⅡ电子传递活性都呈现钟罩形的变化趋势,在最适磷浓度时达到最高,低或高的磷水平下都有所降低。在本实验条件下菱的最适磷浓度为0.1mmol/L,睡莲的最适磷浓度为0.5mmol/L。光呼吸速率在低磷营养水平下较高,表明低磷促进光呼吸。淀粉含量的变化趋势在两种植物中不同,在菱叶中呈先升高后降低趋势,在睡莲中则呈先降低后升高趋势。  相似文献   

17.
利用酶活测定和Northern分子杂变等技术,研究了小麦幼苗离体叶片在不同浓度的不同氮源供应下,其谷氨酰胺合成酶(Gs)、天冬酰胺合成酶(As)、硝酸还原酶(NR)以及Gs基因在转录水平GS-mRNA的变化.结果表明:NH 4处理的小麦,其叶部GS活性比N0f处理的高,NortherⅡ杂交结果说明GS-mRNA转录量与GS活性一致;NO-3可激活NR活性,对AS有较明显的诱导作用.  相似文献   

18.
氮素形态及配比与大白菜体内硝酸盐的积累   总被引:1,自引:0,他引:1  
水培结果表明:氮素用量为210.6mg/l时,随NO3-N浓度的降低和NH4-N浓度的增加,地上干重显著降低,抑制体内硝酸盐、K、Mg、Cu的积累.有利于Fe、Zn的积累。随NO3-N浓度的降低和CO(NH2)2-N浓度的增加,地上干重有明显的单峰值,抑制体内硝酸盐、Mg、Mn的积累,有利于Fe的积累。在NO3-N:CO(NH2)-N为50:50(%)时,地上干重最大,并且硝酸盐含量符合绿色大白菜的基本规格。  相似文献   

19.
采用营养液添加聚乙二醇(PEG6000)人为模拟水分胁迫的培养方法,在5种供氮形态(铵硝比为0/100、25/75、50150、75125、100/0)和两种水分条件(非水分胁迫与水分胁迫)下,研究了苗期水稻(Oryza satixz L.)根系形态和地上部生长动态.结果表明:不论是在非水分胁迫还是水分胁迫条件下,不同形态、比例的氮素对水稻株高、叶面积,根长、表面积、直径有显著影响.两种培养条件下,水稻均在NN4^+-N和NO3^--N混合营养时生长最好.正常水分条件下培养的水稻幼苗在NH4^+-N/NO3^-N为50150时生长最好,而模拟水分胁迫培养的水稻则以25n5处理生长最好.  相似文献   

20.
为了阐明外来入侵植物是否对不同形态氮源具有偏向选择性,研究了外来入侵植物南美蟛蜞菊(Wedelia trilobata)对2种不同形态氮源(NH+4/NO-3)的响应. 结果表明:(1)南美蟛蜞菊在全铵营养条件下的生物量显著高于全硝营养条件;(2)南美蟛蜞菊在全铵营养和全硝营养条件下总生物量和叶绿素含量(SPAD)均显著高于本地种蟛蜞菊(Wedelia chinensis);(3)在全铵营养条件下,南美蟛蜞菊根部游离氨基酸含量显著高于蟛蜞菊;与蟛蜞菊相比,在全硝营养条件下南美蟛蜞菊根部和叶部的硝酸还原酶活性显著升高,硝态氮累积显著减少. 结果表明南美蟛蜞菊为喜铵植物,具有较强的铵态氮同化能力和硝态氮还原能力,对全铵或全硝的极端环境有较强的调节能力,这可能是南美蟛蜞菊入侵成功的重要机制之一,也说明NH+4-N占优势的土壤生境更易遭受南美蟛蜞菊入侵,可能是南美蟛蜞菊在定居和扩散进程中的一个重要变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号