首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X M Zheng  Y Wang  C J Pallen 《Nature》1992,359(6393):336-339
The kinase activity of pp60c-src is specifically and transiently increased during mitosis and repressed during interphase. Loss of cell-cycle control of pp60c-src occurs on mutation of Tyr527 to Phe or when pp60c-src is associated with polyoma middle-T-antigen, and these conditions result in cell transformation or tumorigenesis. In both cases, pp60c-src has elevated kinase activity which is maintained throughout the cell cycle and accompanied by dephosphorylation of the carboxy-terminal negative regulatory Tyr527 site, or mimicry of Tyr527 dephosphorylation in the case of the mutant. Here we report that overexpression of the receptor-like protein tyrosine phosphatase PTP alpha results in persistent activation of pp60c-src kinase, with concomitant cell transformation and tumorigenesis. In PTP alpha-overexpressing cells, the pp60c-src kinase activation is accompanied by dephosphorylation at Tyr527, and direct dephosphorylation of this site by purified PTP alpha occurs in vitro. Our results suggest that PTP alpha is involved in the regulation of cell proliferation, exerting at least some of its effects through pp60c-src kinase, and has oncogenic capability when overexpressed.  相似文献   

2.
S Kaech  L Covic  A Wyss  K Ballmer-Hofer 《Nature》1991,350(6317):431-433
Polyoma middle-T antigen is required for tumorigenesis in animals and for viral transformation of a variety of cells in culture (reviewed in ref. 1). Middle-T associates with and thereby activates p60c-src, a cellular tyrosine kinase homologous to the oncogene product of Rous sarcoma virus. Activation of p60c-src by middle-T is accompanied both by dephosphorylation of tyrosine 527, a site which negatively regulates src kinase src kinase activity (reviewed in refs 4-6) and by autophosphorylation on tyrosine 416 (refs 7-10). Phosphoprotein p60c-src is subject to cell cycle-specific regulation. It is most active during mitosis and repressed in interphase. Here we report that mitotic p60c-src is dephosphorylated at tyrosine 527. We also show that in cells expressing middle-T, src kinase activity is high both in mitosis and during interphase. An oncogenic mutant src protein, p60c-src(527F), where tyrosine 527 is substituted by phenylalanine, is also highly active in all phases of the cell cycle.  相似文献   

3.
S Nada  M Okada  A MacAuley  J A Cooper  H Nakagawa 《Nature》1991,351(6321):69-72
The protein-tyrosine kinase activity of the proto-oncogene product p60c-src is negatively regulated by the phosphorylation of a tyrosine residue close to the C terminus, tyrosine 527. The phosphorylation might be catalysed by a so-far-unidentified tyrosine kinase, distinct from p60c-src. Recently we purified a protein-tyrosine kinase that specifically phosphorylates tyrosine 527 of p60c-src from neonatal rat brain. We have now confirmed the specificity of this enzyme by using a mutant p60c-src that has a phenylalanine instead of tyrosine 527, and cloned a complementary DNA that encodes the enzyme. The enzyme is similar to kinases of the src family in that it has two conserved regions, Src-homology regions 2 and 3, upstream of a tyrosine kinase domain. The amino-acid identity of each region is no more than 47%, however, and the enzyme lacks phosphorylation sites corresponding to tyrosines 416 and 527 of p60c-src and has no myristylation signal. These results suggest that this protein-tyrosine kinase, which might negatively regulate p60c-src, represents a new type of tyrosine kinase.  相似文献   

4.
A Amon  U Surana  I Muroff  K Nasmyth 《Nature》1992,355(6358):368-371
Progression from G2 to M phase in eukaryotes requires activation of a protein kinase composed of p34cdc2/CDC28 associated with G1-specific cyclins. In some organisms the activation of the kinase at the G2/M boundary is due to dephosphorylation of a highly conserved tyrosine residue at position 15 (Y15) of the cdc2 protein. Here we report that in the budding yeast Saccharomyces cerevisiae, p34CDC28 also undergoes cell-cycle regulated dephosphorylation on an equivalent tyrosine residue (Y19). However, in contrast to previous observations in S. pombe, Xenopus and mammalian cells, dephosphorylation of Y19 is not required for the activation of the CDC28/cyclin kinase. Furthermore, mutation of this tyrosine residue does not affect dependence of mitosis on DNA synthesis nor does it abolish G2 arrest induced by DNA damage. Our data imply that regulated phosphorylation of this tyrosine residue is not the 'universal' means by which the onset of mitosis is determined. We propose that there are other unidentified controls that regulate entry into mitosis.  相似文献   

5.
K L Gould  P Nurse 《Nature》1989,342(6245):39-45
The cdc2+ protein kinase (pp34) is found to be phosphorylated on tyrosine as well as serine and threonine residues in exponentially growing Schizosaccharomyces pombe. At mitosis, the level of pp34 phosphorylation on both threonine and tyrosine residues decreases. The single detectable site of tyrosine phosphorylation in pp34 has been mapped to Tyr 15, a residue within the presumptive ATP-binding domain. Substitution of this tyrosine by phenylalanine advances cells prematurely into mitosis, establishing that tyrosine phosphorylation/dephosphorylation directly regulates pp34 function.  相似文献   

6.
N Abraham  M C Miceli  J R Parnes  A Veillette 《Nature》1991,350(6313):62-66
Lymphocyte-specific tyrosine protein kinase p56lck is physically associated with CD4 and CD8 T-cell surface molecules, suggesting that it may transduce CD4/CD8-triggered tyrosine phosphorylation signals during antigen stimulation. Indeed, antibody-mediated aggregation of CD4 (to mimic interaction with its ligand, major histocompatibility complex (MHC) class II molecules), rapidly elevates the kinase activity of p56lck and is associated with marked changes in tyrosine protein phosphorylation. Genetic analyses suggest that the interaction of CD4/CD8 with p56lck results in a positive signal during antigen-induced T-cell activation. To evaluate directly the role of p56lck in T-cell activation, we introduced a constitutively activated form of Lck protein (tyrosine 505 to phenylalanine 505 mutant); in a CD4-negative, MHC-class II restricted mouse T-cell hybridoma. We report here that, as for transfection of CD4, expression of the Lck mutant enhanced T-lymphocyte responsiveness. This finding provides direct evidence that p56lck can positively regulate T-cell functions and that it mediates at least some of the effects of CD4 and CD8 on T-cell activation.  相似文献   

7.
Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.  相似文献   

8.
P K Sorger  A W Murray 《Nature》1992,355(6358):365-368
In somatic cells, entry into mitosis depends on the completion of DNA synthesis. This dependency is established by S-phase feedback controls that arrest cell division when damaged or unreplicated DNA is present. In the fission yeast Schizosaccharomyces pombe, mutations that interfere with the phosphorylation of tyrosine 15 (Y15) of p34cdc2, the protein kinase subunit of maturation promoting factor, accelerate the entry into mitosis and abolish the ability of unreplicated DNA to arrest cells in G2. Because the tyrosine phosphorylation of p34cdc2 is conserved in S. pombe, Xenopus, chicken and human cells, the regulation of p34cdc2-Y15 phosphorylation could be a universal mechanism mediating the S-phase feedback control and regulating the initiation of mitosis. We have investigated these phenomena in the budding yeast Saccharomyces cerevisiae. We report here that the CDC28 gene product (the S. cerevisiae homologue of cdc2) is phosphorylated on the equivalent tyrosine (Y19) during S phase but that mutations that prevent tyrosine phosphorylation do not lead to premature mitosis and do not abolish feedback controls. We have therefore demonstrated a mechanism that does not involve tyrosine phosphorylation of p34 by which cells arrest their division in response to the presence of unreplicated or damaged DNA. We speculate that this mechanism may not involve the inactivation of p34 catalytic activity.  相似文献   

9.
cdc2 is a catalytic subunit of a protein kinase complex, called the M-phase promoting factor, that induces entry into mitosis and is universal among eukaryotes. In HeLa cells, cdc2 is shown to be the most abundant phosphotyrosine-containing protein and its phosphotyrosine content is subject to cell-cycle regulation. One site of cdc2 tyrosine phosphorylation in vivo is selectively phosphorylated by pp60c-src in vitro.  相似文献   

10.
B A Oostra  R Harvey  B K Ely  A F Markham  A E Smith 《Nature》1983,304(5925):456-459
The ability of polyoma virus to transform cells results primarily from the action of one of the virus-coded early proteins, called middle-T antigen. Middle-T has an associated tyrosine-specific protein kinase activity that can be measured in vitro and results in the phosphorylation of middle-T itself. Almost all mutants so far tested that lack the ability to transform cells, also lack associated kinase activity. Attempts to map within middle-T the tyrosine residue(s) that are phosphorylated in vitro suggest that a likely site of phosphorylation is tyrosine 315 (refs 8-10 and unpublished results). The amino acid sequence preceding Tyr 315 includes a tract of six contiguous glutamic acid residues and bears some homology with that preceding the tyrosine phosphorylated in vivo in pp60v-src, the transforming protein of Rous sarcoma virus, and with a region in the polypeptide hormone, gastrin, preceding a tyrosine that is sulphated. Furthermore, although surprisingly large tracts of middle-T may be removed without affecting its transforming activity, mutants that lack the sequences corresponding to amino acids 311-318 inclusive are transformation defective. Because the likely site of phosphorylation, the homology with pp60v-src and gastrin and the sequence apparently required for transformation all overlap, it has generally been accepted that this region of middle-T may form part of an essential region, possibly an active site on the protein. Here we have used techniques of site-directed and site-specific mutagenesis to probe the sequence requirements in more detail. Contrary to expectation, the results obtained strongly suggest that Tyr 315 and conservation of the surrounding amino acid sequence are not essential for transformation.  相似文献   

11.
E Eiseman  J B Bolen 《Nature》1992,355(6355):78-80
The high-affinity IgE receptor (Fc epsilon RI), which is expressed on the surface of mast cells and basophils, has a central role in immediate allergic responses. In the rat basophilic leukaemia cell line RBL-2H3, which is a model system for the analysis of Fc epsilon RI-mediated signal transduction, surface engagement of Fc epsilon RI induces histamine release and the tyrosine phosphorylation of several distinct proteins. Although the alpha, beta, and gamma subunits of Fc epsilon RI lack intrinsic tyrosine protein kinase (TPK) activity, a kinase that copurifies with Fc epsilon RI phosphorylates the beta and gamma subunits of the receptor on tyrosine residues. We report here that in RBL-2H3 cells, p56lyn and pp60c-src are activated after Fc epsilon RI crosslinking, and p56lyn coimmunoprecipitates with Fc epsilon RI. In the mouse mast-cell line PT-18, another cell type used to study FC epsilon RI-mediated signalling, tyrosine phosphorylation of proteins is also an immediate consequence of receptor crosslinking. Notably, the only detectable src protein-related TPK in PT-18 cells is p62c-yes, and it is this TPK that is activated on Fc epsilon RI engagement and coimmunoprecipitates with the receptor. Therefore, it seems that different src protein-related TPKs can associate with the same receptor and become activated after receptor engagement.  相似文献   

12.
J Gautier  T Matsukawa  P Nurse  J Maller 《Nature》1989,339(6226):626-629
Genetic studies in the fission yeast Schizosaccharomyces pombe have established that a critical element required for the G2----M-phase transition in the cell cycle is encoded by the cdc2+ gene. The product of this gene is a serine/threonine protein kinase, designated p34cdc, that is highly conserved functionally from yeast to man2 and has a relative molecular mass of 34,000 (34 K). Purified maturation-promoting factor (MPF) is a complex of p34cdc2 and a 45K substrate that appears in late G2 phase and is sufficient to drive cells into mitosis. This factor has been identified in all eukaryotic cells, and in vitro histone H1 is the preferred substrate for phosphorylation. The increase in the activity of H1 kinase in M-phase is associated with a large increase in total cell protein phosphorylation which is believed to be a consequence of MPF activation. We show here that the H1 kinase activity of p34cdc2 oscillates during the cell cycle in Xenopus, and maximal activity correlates with the dephosphorylated state of p34cdc2. Direct inactivation of MPF in vitro is accompanied by phosphorylation of p34cdc2 and reduction of its protein kinase activity.  相似文献   

13.
Phosphorylation of two small GTP-binding proteins of the Rab family by p34cdc2   总被引:17,自引:0,他引:17  
E Bailly  M McCaffrey  N Touchot  A Zahraoui  B Goud  M Bornens 《Nature》1991,350(6320):715-718
Entry of a cell into mitosis induces a series of structural and functional changes including arrest of intracellular transport. Knowledge of how the mitotic cycle is driven progressed substantially with the identification of the p34cdc2 protein kinase as a subunit of maturation-promoting factor, the universal regulating component of the mitotic cycle. Activation of the kinase at the onset of mitosis is thought to trigger the important mitotic events by phosphorylating key proteins. Small guanine nucleotide-binding proteins have been implicated in regulating transport pathways. For instance, two small Ras-related GTP-binding proteins, Sec4p and Ypt1p, control distinct stages of the secretory pathway in budding yeast. The GTP-binding proteins of the Rab family in rats and humans display strong homologies with Sec4p and Ypt1p, and might therefore also be involved in regulating intracellular transport. Indeed, distinct Rab proteins are located in the exocytotic and endocytotic compartments. Interruption of vesicular transport during mitosis might involve modification of these proteins. We now present biochemical evidence for a mitosis-specific p34cdc2 phosphorylation of Rab1Ap and Rab4p. By contrast, Rab2p and Rab6p are not phosphorylated. We also show that the distribution of Rab1Ap and Rab4p between cytosolic and membrane-bound forms is different in interphase and mitotic cells. This may provide a clue to the mechanism by which phosphorylation could affect membrane traffic during mitosis.  相似文献   

14.
Y Gotoh  E Nishida  S Matsuda  N Shiina  H Kosako  K Shiokawa  T Akiyama  K Ohta  H Sakai 《Nature》1991,349(6306):251-254
The protein kinase MAP kinase, also called MAP2 kinase, is a serine/threonine kinase whose activation and phosphorylation are induced by a variety of mitogens, and which is thought to have a critical role in a network of protein kinases in mitogenic signal transduction. A burst in kinase activation and protein phosphorylation may also be important in triggering the dramatic reorganization of the cell during the transition from interphase to mitosis. The interphase-metaphase transition of microtubule arrays is under the control of p34cdc2 kinase, a central control element in the G2-M transition of the cell cycle. Here we show that a Xenopus kinase, closely related to the mitogen-activated mammalian MAP kinase, is phosphorylated and activated during M phase of meiotic and mitotic cell cycles, and that the interphase-metaphase transition of microtubule arrays can be induced by the addition of purified Xenopus M phase-activated MAP kinase or mammalian mitogen-activated MAP kinase to interphase extracts in vitro.  相似文献   

15.
S A Courtneidge  A E Smith 《Nature》1983,303(5916):435-439
Polyoma virus can transform the growth properties of rodent cells grown in culture and form tumours in susceptible animals, an activity largely due to one of the virus-encoded proteins, called middle T. Middle T has an associated tyrosine-specific protein kinase activity in vitro and interacts with cellular membranes, but the biochemical basis of its ability to transform remains unclear. Although there is some correlation between the transforming activity of different polyoma virus mutants and their ability to accept phosphate on tyrosine in middle T in the in vitro kinase reaction, the abundance of phosphotyrosine in protein is not elevated in polyoma virus-transformed cells and no cellular substrates for the putative kinase have been identified. It is also not yet known whether the tyrosine kinase of middle T is an intrinsic activity of the protein itself or the property of an associated enzyme. The experiments described here indicate that a fraction of middle T forms a stable complex with pp60c-src, the product of a cellular oncogene, and lead us to propose that the middle T associated kinase at least in part is a property of pp60c-src rather than middle T itself.  相似文献   

16.
M A Félix  J C Labbé  M Dorée  T Hunt  E Karsenti 《Nature》1990,346(6282):379-382
The cell cycles of early Xenopus embryos consist of a rapid succession of alternating S and M phases. These cycles are controlled by the activity of a protein kinase complex (cdc2 kinase) which contains two subunits. One subunit is encoded by the frog homologue of the fission yeast cdc2+ gene, p34cdc2 and the other is a cyclin. The concentration of cyclins follows a sawtooth oscillation because they accumulate in interphase and are destroyed abruptly during mitosis. The association of cyclin and p34cdc2 is not sufficient for activation of cdc2 kinase, however; dephosphorylation of key tyrosine and threonine residues of p34cdc2 is necessary to turn on its kinase activity. The activity of cdc2 kinase is thus regulated by a combination of translational and post-translational mechanisms. The loss of cdc2 kinase activity at the end of mitosis depends on the destruction of the cyclin subunits. It has been suggested that this destruction is induced by cdc2 kinase itself, thereby providing a negative feedback loop to terminate mitosis. Here we report direct experimental evidence for this idea by showing that cyclin proteolysis can be triggered by adding cdc2 kinase to a cell-free extract of interphase Xenopus eggs.  相似文献   

17.
The CD4 T-cell surface antigen is an integral membrane glycoprotein of relative molecular mass 55,000 which binds class II major histocompatibility complex (MHC) molecules expressed on antigen presenting cells (APCs). It is thought to stabilize physical interactions between T cells and APCs (for a review, see ref. 1). Evidence is accumulating that suggests that CD4 can transduce an independent signal during T-cell activation. It has recently been shown that CD4 expressed on human and murine T cells is physically associated with the Src-related tyrosine protein kinase p56lck (refs 7, 8). These results indicate that CD4 can function as a signal transducer and suggest that tyrosine phosphorylation events may be important in CD4-mediated signalling. Here, we present evidence that cross-linking of the CD4 receptor induces a rapid increase in the tyrosine-specific protein kinase activity of p56lck and is associated with the rapid phosphorylation of one of the subunits (zeta) of the T-cell receptor complex on tyrosine residues. These data provide direct evidence for a specific CD4 signal transduction pathway that is mediated through p56lck and suggest that some of the tyrosine phosphorylation events detected during antigen-mediated T-cell activation may result from signalling through this surface molecule.  相似文献   

18.
J Pines  T Hunter 《Nature》1990,346(6286):760-763
  相似文献   

19.
Stimulation of certain receptor tyrosine kinases results in the tyrosine phosphorylation and activation of phospholipase C gamma (PLC gamma), an enzyme that catalyses the hydrolysis of phosphatidylinositol (PtdIns). This hydrolysis generates diacylglycerol and free inositol phosphate, which in turn activate protein kinase C and increase intracellular Ca2+, respectively. PLC gamma physically associates with activated receptor tyrosine kinases, suggesting that it is a substrate for direct phosphorylation by these kinases. Here we report that a fibroblast growth factor (FGF) receptor with a single point mutation at residue 766 replacing tyrosine with phenylalanine fails to associate with PLC gamma in response to FGF. This mutant receptor also failed to mediate PtdIns hydrolysis and Ca2+ mobilization after FGF stimulation. However, the mutant receptor phosphorylated itself and several other cellular proteins, and it mediated mitogenesis in response to FGF. These findings show that a point mutation in the FGF receptor selectively eliminates activation of PLC gamma and that neither Ca2+ mobilization nor PtdIns hydrolysis are required for FGF-induced mitogenesis.  相似文献   

20.
The T lymphocyte surface protein CD4 is an integral membrane glycoprotein noncovalently associated with the tyrosine protein kinase p56lck. In normal T cells, surface association of CD4 molecules with other CD4 molecules or other T-cell surface proteins, such as the T-cell antigen receptor, stimulates the activity of the p56lck tyrosine kinase, resulting in the phosphorylation of various cellular proteins at tyrosine residues. Thus, the signal transduction in T cells generated through the surface engagement of CD4 is similar to that observed for the class of growth factor receptors possessing endogenous tyrosine kinase activity. As CD4 is also the cellular receptor for the human immunodeficiency virus (HIV), binding of the virus or gp120 (the virus surface protein responsible for specific CD4+ T-cell association) could mimic the types of immunological interactions that have previously been found to stimulate p56lck and trigger T-cell activation pathways. We have evaluated this possibility and report here that binding of HIV-1 or the virus glycoprotein gp120 to CD4+ human T cells fails to elicit detectable p56lck-dependent tyrosine kinase activation and signalling, alterations in the composition of cellular phosphotyrosine-containing proteins, or changes in intracellular Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号