首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Brundin  A Flock  B Canlon 《Nature》1989,342(6251):814-816
The inner ear is capable of highly selective frequency discrimination. This is achieved not only by the travelling wave of the basilar membrane in the cochlear partition, but also by the active participation of nonlinear and vulnerable elements that enhance frequency selectivity. It has been shown that isolated mammalian outer hair cells respond with a change in length when subjected to sound stimulation at a fixed frequency. Here we investigate the motile behaviour of isolated cells when the stimulus frequency is varied between 200 and 10,000 Hz. By varying the frequency and the intensity of the tone, it is possible to obtain 'tuning curves' for the motile response. We demonstrate that the cell body of solitary hair cells, free from contact with the basilar membrane, shows a sharply tuned motile behaviour. We suggest that frequency selectivity in the organ of Corti is amplified by the tuned motility of the cell body of outer hair cells.  相似文献   

2.
Auditory collusion and a coupled couple of outer hair cells.   总被引:7,自引:0,他引:7  
H B Zhao  J Santos-Sacchi 《Nature》1999,399(6734):359-362
The discrepancies between measured frequency responses of the basilar membrane in the inner ear and the frequency tuning found in psychophysical experiments led to Bekesy's idea of lateral inhibition in the auditory nervous system. We now know that basilar membrane tuning can account for neural tuning, and that sharpening of the passive travelling wave depends on the mechanical activity of outer hair cells (OHCs)3, but the mechanism by which OHCs enhance tuning remains unclear. OHCs generate voltage-dependent length changes at acoustic rates, which deform the cochlear partition. Here we use an electrical correlate of OHC mechanical activity, the motility-related gating current, to investigate mechano-electrical interactions among adjacent OHCs. We show that the motility caused by voltage stimulation of one cell in a group evokes gating currents in adjacent OHCs. The resulting polarization in adjacent cells is opposite to that within the stimulated cell, which may be indicative of lateral inhibition. Also such interactions promote distortion and suppression in the electrical and, consequently, the mechanical activity of OHCs. Lateral interactions may provide a basis for enhanced frequency selectivity in the basilar membrane of mammals.  相似文献   

3.
A cytoskeletal spring in cochlear outer hair cells   总被引:9,自引:0,他引:9  
M C Holley  J F Ashmore 《Nature》1988,335(6191):635-637
  相似文献   

4.
He DZ  Jia S  Dallos P 《Nature》2004,429(6993):766-770
Sensory receptor cells of the mammalian cochlea are morphologically and functionally dichotomized. Inner hair cells transmit auditory information to the brain, whereas outer hair cells (OHC) amplify the mechanical signal, which is then transduced by inner hair cells. Amplification by OHCs is probably mediated by their somatic motility in a mechanical feedback process. OHC motility in vivo is thought to be driven by the cell's receptor potential. The first steps towards the generation of the receptor potential are the deflection of the stereociliary bundle, and the subsequent flow of transducer current through the mechanosensitive transducer channels located at their tips. Quantitative relations between transducer currents and basilar membrane displacements are lacking, as well as their variation along the cochlear length. To address this, we simultaneously recorded OHC transducer currents (or receptor potentials) and basilar membrane motion in an excised and bisected cochlea, the hemicochlea. This preparation permits recordings from adult OHCs at various cochlear locations while the basilar membrane is mechanically stimulated. Furthermore, the stereocilia are deflected by the same means of stimulation as in vivo. Here we show that asymmetrical transducer currents and receptor potentials are significantly larger than previously thought, they possess a highly restricted dynamic range and strongly depend on cochlear location.  相似文献   

5.
Boettger T  Hübner CA  Maier H  Rust MB  Beck FX  Jentsch TJ 《Nature》2002,416(6883):874-878
Hearing depends on a high K(+) concentration bathing the apical membranes of sensory hair cells. K(+) that has entered hair cells through apical mechanosensitive channels is transported to the stria vascularis for re-secretion into the scala media(). K(+) probably exits outer hair cells by KCNQ4 K(+) channels(), and is then transported by means of a gap junction system connecting supporting Deiters' cells and fibrocytes() back to the stria vascularis. We show here that mice lacking the K(+)/Cl(-) (K-Cl) co-transporter Kcc4 (coded for by Slc12a7) are deaf because their hair cells degenerate rapidly after the beginning of hearing. In the mature organ of Corti, Kcc4 is restricted to supporting cells of outer and inner hair cells. Our data suggest that Kcc4 is important for K(+) recycling() by siphoning K(+) ions after their exit from outer hair cells into supporting Deiters' cells, where K(+) enters the gap junction pathway. Similar to some human genetic syndromes(), deafness in Kcc4-deficient mice is associated with renal tubular acidosis. It probably results from an impairment of Cl(-) recycling across the basolateral membrane of acid-secreting alpha-intercalated cells of the distal nephron.  相似文献   

6.
7.
Although the cochlea is an amplifier and a remarkably sensitive and finely tuned detector of sounds, it also produces conspicuous mechanical and electrical waveform distortions. These distortions reflect nonlinear mechanical interactions within the cochlea. By allowing one tone to suppress another (masking effect), they contribute to speech intelligibility. Tones can also combine to produce sounds with frequencies not present in the acoustic stimulus. These sounds compose the otoacoustic emissions that are extensively used to screen hearing in newborns. Because both cochlear amplification and distortion originate from the outer hair cells-one of the two types of sensory receptor cells-it has been speculated that they stem from a common mechanism. Here we show that the nonlinearity underlying cochlear waveform distortions relies on the presence of stereocilin, a protein defective in a recessive form of human deafness. Stereocilin was detected in association with horizontal top connectors, lateral links that join adjacent stereocilia within the outer hair cell's hair bundle. These links were absent in stereocilin-null mutant mice, which became progressively deaf. At the onset of hearing, however, their cochlear sensitivity and frequency tuning were almost normal, although masking was much reduced and both acoustic and electrical waveform distortions were completely lacking. From this unique functional situation, we conclude that the main source of cochlear waveform distortions is a deflection-dependent hair bundle stiffness resulting from constraints imposed by the horizontal top connectors, and not from the intrinsic nonlinear behaviour of the mechanoelectrical transducer channel.  相似文献   

8.
How the ear's works work   总被引:44,自引:0,他引:44  
A J Hudspeth 《Nature》1989,341(6241):397-404
The senses of hearing and equilibrium depend on sensory receptors called hair cells which can detect motions of atomic dimensions and respond more than 100,000 times a second. Biophysical studies suggest that mechanical forces control the opening and closing of transduction channels by acting through elastic components in each hair cell's mechanoreceptive hair bundle. Other ion channels, as well as the mechanical and hydrodynamic properties of hair bundles, tune individual hair cells to particular frequencies of stimulation.  相似文献   

9.
Kennedy HJ  Crawford AC  Fettiplace R 《Nature》2005,433(7028):880-883
It is generally accepted that the acute sensitivity and frequency discrimination of mammalian hearing requires active mechanical amplification of the sound stimulus within the cochlea. The prevailing hypothesis is that this amplification stems from somatic electromotility of the outer hair cells attributable to the motor protein prestin. Thus outer hair cells contract and elongate in synchrony with the sound-evoked receptor potential. But problems arise with this mechanism at high frequencies, where the periodic component of the receptor potential will be attenuated by the membrane time constant. On the basis of work in non-mammalian vertebrates, force generation by the hair bundles has been proposed as an alternative means of boosting the mechanical stimulus. Here we show that hair bundles of mammalian outer hair cells can also produce force on a submillisecond timescale linked to adaptation of the mechanotransducer channels. Because the bundle motor may ultimately be limited by the deactivation rate of the channels, it could theoretically operate at high frequencies. Our results show the existence of another force generator in outer hair cells that may participate in cochlear amplification.  相似文献   

10.
Electrokinetic shape changes of cochlear outer hair cells   总被引:27,自引:0,他引:27  
B Kachar  W E Brownell  R Altschuler  J Fex 《Nature》1986,322(6077):365-368
Rapid mechanical changes have been associated with electrical activity in a variety of non-muscle excitable cells. Recently, mechanical changes have been reported in cochlear hair cells. Here we describe electrically evoked mechanical changes in isolated cochlear outer hair cells (OHCs) with characteristics which suggest that direct electrokinetic phenomena are implicated in the response. OHCs make up one of two mechanosensitive hair cell populations in the mammalian cochlea; their role may be to modulate the micromechanical properties of the hearing organ through mechanical feedback mechanisms. In the experiments described here, we applied sinusoidally modulated electrical potentials across isolated OHCs; this produced oscillatory elongation and shortening of the cells and oscillatory displacements of intracellular organelles. The movements were a function of the direction and strength of the electrical field, were inversely related to the ionic concentration of the medium, and occurred in the presence of metabolic uncouplers. The cylindrical shape of the OHCs and the presence of a system of membranes within the cytoplasm--laminated cisternae--may provide the anatomical substrate for electrokinetic phenomena such as electro-osmosis.  相似文献   

11.
Mechanoelectrical transduction, the conversion of mechanical force into electrochemical signals, underlies a range of sensory phenomena, including touch, hearing and balance. Hair cells of the vertebrate inner ear are specialized mechanosensors that transduce mechanical forces arising from sound waves and head movement to provide our senses of hearing and balance; however, the mechanotransduction channel of hair cells and the molecules that regulate channel activity have remained elusive. One molecule that might participate in mechanoelectrical transduction is cadherin 23 (CDH23), as mutations in its gene cause deafness and age-related hearing loss. Furthermore, CDH23 is large enough to be the tip link, the extracellular filament proposed to gate the mechanotransduction channel. Here we show that antibodies against CDH23 label the tip link, and that CDH23 has biochemical properties similar to those of the tip link. Moreover, CDH23 forms a complex with myosin-1c, the only known component of the mechanotransduction apparatus, suggesting that CDH23 and myosin-1c cooperate to regulate the activity of mechanically gated ion channels in hair cells.  相似文献   

12.
朝鲜鹌鹑耳蜗的组织学观察   总被引:1,自引:1,他引:0  
本实验对成体朝鲜鹌鹑耳蜗的组织学结构进行了观察,朝鲜鹌鹑耳蜗由基乳突、听壶和淋巴管三部分组成。听壶由毛细胞、支持细胞和基膜组成;毛细胞呈柱状,支持细胞呈指状。基乳突由毛细胞、支持细胞和基膜组成;毛细胞分成高、中间和矮毛细胞三型。高毛细胞呈柱状,分布在除近端以外各处,在远端全为高毛细胞;中间毛细胞呈壶形和柱形的中间形态,分布在高、矮毛细胞交界处;矮毛细胞呈壶形,分布在除远端以外各处。基乳突的基膜主要由排列疏松的纤维构成。  相似文献   

13.
Outer hair cells in the mammalian cochlea and noise-induced hearing loss   总被引:2,自引:0,他引:2  
A R Cody  I J Russell 《Nature》1985,315(6021):662-665
Hair cells in the mammalian cochlea transduce mechanical stimuli into electrical signals leading to excitation of auditory nerve fibres. Because of their important role in hearing, these cells are a possible site for the loss of cochlear sensitivity that follows acoustic overstimulation. We have recorded from inner and outer hair cells (IHC, OHC) in the guinea pig cochlea during and after exposure to intense tones. Our results show functional changes in the hair cells that may explain the origin of noise-induced hearing loss. Both populations of hair cells show a reduction in amplitude and an increase in the symmetry of their acoustically evoked receptor potentials. In addition, the OHCs also suffer a sustained depolarization of the membrane potential. Significantly, the membrane and receptor potentials of the OHCs recover in parallel with cochlear sensitivity as measured by the IHC receptor potential amplitude and the auditory nerve threshold. Current theories of acoustic transduction suggest that the mechanical input to IHCs may be regulated by the OHCs. Consequently, the modified function of OHCs after acoustic overstimulation may determine the extent of the hearing loss following loud sound.  相似文献   

14.
对朝鲜鹌鹑耳蜗感觉上皮的超微结构进行了研究。朝鲜鹌鹑耳蜗感觉上皮包括听壶感觉上皮和基乳突感觉上皮两部分。这两部分感觉上皮均由毛细胞和支持细胞构成。毛细胞基部与神经末梢形成突触,顶端角质锥中伸出动纤毛和静纤毛,与鸡的耳蜗毛细胞相似,朝鲜鹌鹑耳蜗毛细胞缺乏动纤毛。  相似文献   

15.
Mechanosensitivity of mammalian auditory hair cells in vitro   总被引:1,自引:0,他引:1  
I J Russell  G P Richardson  A R Cody 《Nature》1986,321(6069):517-519
Intracellular responses recorded in vitro from the cochleas of anaesthetized mammals have shown that the mechanoreceptive inner and outer hair cells are sharply tuned, accounting for many of the properties of the afferent fibres in the auditory nerve. However, in vivo it has not been possible to measure directly the excitatory mechanical input to these cells (the displacement of their mechanosensitive stereocilia) and thus to determine the relationship between the receptor potentials and displacement of their stereocilia. As a means of circumventing this technical difficulty, we have developed an organ culture of the mouse cochlea and here we describe the receptor potentials generated by the hair cells in response to direct displacement of their stereocilia.  相似文献   

16.
Chronic electrical stimulation of the auditory nerve in patients with profound sensori-neural deafness is becoming increasingly routine. Therefore, it is important to understand more about the long-term consequences of this procedure. Hitherto, structural studies in animals after electrocochlear stimulation have concentrated on the stimulated cochlea. Here we have examined the effects of unilateral extracochlear electrical stimulation on the spiral organ of both the ipsilateral and contralateral ears of the mature guinea pig, and have found alterations in the structure of the outer hair cells and their efferent nerve terminals in the contralateral as well as the ipsilateral cochlea. This is the first evidence for a structural influence of efferent activity on the cochlea. Although the importance of the efferent system, consisting of the crossed and uncrossed olivo-cochlear bundles, is well established in providing central control of the sensory pathways, its exact role in hearing is incompletely understood. However, it is known that the outer hair cells and their efferent innervation are important in their contribution to inner hair cell responses and in modulating the micromechanics of the whole cochlea. These efferent functions now appear to be related to an important part of cochlear morphology, and are also relevant to our understanding of cochlear neurobiology, normal development and the management of hearing disability in both adult and child.  相似文献   

17.
Ionic basis of membrane potential in outer hair cells of guinea pig cochlea   总被引:14,自引:0,他引:14  
J F Ashmore  R W Meech 《Nature》1986,322(6077):368-371
Mammalian hearing involves features not found in other species, for example, the separation of sound frequencies depends on an active control of the cochlear mechanics. The force-generating component in the cochlea is likely to be the outer hair cell (OHC), one of the two types of sensory cell through which current is gated by mechano-electrical transducer channels sited on the apical surface. Outer hair cells isolated in vitro have been shown to be motile and capable of generating forces at acoustic frequencies. The OHC membrane is not, however, electrically tuned, as found in lower vertebrates. Here we describe how the OHC resting potential is determined by a Ca2+-activated K+ conductance at the base of the cell. Two channel types with unitary sizes of 240 and 45 pS underlie this Ca2+-activated K+ conductance and we suggest that their activity is determined by a Ca2+ influx through the apical transducer channel, as demonstrated in other hair cells. This coupled system simultaneously explains the large OHC resting potentials observed in vivo and indicates how the current gated by the transducer may be maximized to generate the forces required in cochlear micromechanics.  相似文献   

18.
Fritzsch B 《Nature》1987,327(6118):153-154
Auditory reception in elasmobranchs, teleosts and amphibians may be mediated by various inner-ear sensory epithelia 1–3, including the basilar papilla, which seems to be the precursor of the cochlea in mammals. The origin of the basilar papilla remains a major unsolved problem for understanding the evolution of hearing in terrestrial vertebrates4–6. Study of living species indicates that the basilar papilla is a unique feature of tetrapods 6,7, but palaeonto-logical data indicate that this epithelium as well as a middle ear, is already present in crossopterygian fish 8–10. However, no basilar papilla has been found in the only living crossopterygian species, the coelacanth Latimeria chalumnae 11. I have re-examined the inner ear of adult and embryonic Latimeria and find a membranous specialization which resembles in structure, position and innerva-tion pattern the basilar papilla of tetrapods, in particular amniotes. No epithelium comparable to the basilar papilla was found in lungfish. I suggest that the basilar papillae of Latimeria and tetrapods are homologous and evolved only once in their common ancestor.  相似文献   

19.
Developmental alterations in the frequency map of the mammalian cochlea   总被引:2,自引:0,他引:2  
S M Echteler  E Arjmand  P Dallos 《Nature》1989,341(6238):147-149
The position of an auditory hair cell along the length of the cochlea determines the sound frequency to which it is most sensitive. Receptors located near the proximal end (base) of the cochlea are maximally stimulated by high-frequency sounds; those occupying successively more distal (apical) positions respond best to progressively lower frequencies. At present, it is unclear how this frequency place map emerges with respect to the development of the cochlea. It has been suggested, on the basis of acoustic trauma experiments with developing chicks and cochlear potential recordings from developing gerbils, that this map may arise through systematic changes in the spatial encoding of frequency along the cochlea. Others have inferred from frequency tuning curves derived from auditory-nerve recordings in developing mammals and chicks, that the cochlear frequency-place map remains stable throughout development. We analysed frequency tuning curves obtained from gerbil spiral ganglion cells at a constant location within the basal cochlea, and report here that these cells undergo significant increases (up to 1.5 octaves) in their best-response frequencies between the second and third weeks of postnatal life. These recordings provide direct evidence for developmental changes in the tonotopic organization of the mammalian cochlea.  相似文献   

20.
Liberman MC  Gao J  He DZ  Wu X  Jia S  Zuo J 《Nature》2002,419(6904):300-304
Hearing sensitivity in mammals is enhanced by more than 40 dB (that is, 100-fold) by mechanical amplification thought to be generated by one class of cochlear sensory cells, the outer hair cells. In addition to the mechano-electrical transduction required for auditory sensation, mammalian outer hair cells also perform electromechanical transduction, whereby transmembrane voltage drives cellular length changes at audio frequencies in vitro. This electromotility is thought to arise through voltage-gated conformational changes in a membrane protein, and prestin has been proposed as this molecular motor. Here we show that targeted deletion of prestin in mice results in loss of outer hair cell electromotility in vitro and a 40-60 dB loss of cochlear sensitivity in vivo, without disruption of mechano-electrical transduction in outer hair cells. In heterozygotes, electromotility is halved and there is a twofold (about 6 dB) increase in cochlear thresholds. These results suggest that prestin is indeed the motor protein, that there is a simple and direct coupling between electromotility and cochlear amplification, and that there is no need to invoke additional active processes to explain cochlear sensitivity in the mammalian ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号