首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrauterine injection and zymography were used to investigate the effect of nitric oxide (NO) on embryo implantation in mice. On day 3, one uterine horn of female pregnant mice was injected intraluminally with various doses of nitric oxide synthase (NOS) inhibitor, N-nitro-L-arginine methyl ester (L-NAME), while the contralateral horn served as control. Animals were sacrificed by cervical dislocation on day 7 of gestation, and the number of implanted embryos in each horn was calculated. The results showed that lower doses (0.05 mg L-NAME) did not inhibit implantation significantly (P > 0.05), but high doses (0.2 mg L- NAME) resulted in a significant reduction in the number of implanted embryos (P < 0.05). Co-administration of SNP, a generator of NO, with L-NAME would reverse the antiimplantation effect of L-NAME. To further understand the precise mechanism of NO in implantation, matrix metalloproteinase (MMPs) activities were detected by gelatin zymography. The reduction in the number of implanted embryos in 0.2 mg L-NAME treated group was associated with decreased MMP-9 activity but a stable MMP-2 activity. The activities of MMP-2 and MMP-9 were not changed in L-NAME and SNP treated group. These data suggest that NO acts as a mediator to regulate the activity of MMP-9, and facilitates embryo implantation.  相似文献   

2.
P R Myers  R L Minor  R Guerra  J N Bates  D G Harrison 《Nature》1990,345(6271):161-163
Studies of cultured bovine aortic endothelial cells using quantitative chemiluminescence techniques have shown that the amount of nitric oxide released under basal conditions, or in response to either bradykinin or the calcium ionophore A23187 is insufficient to account for the vasorelaxant activities of the endothelium-derived relaxing factor (EDRF) derived from the same source. This observation contradicts previous suggestions that nitric oxide and EDRF are the same compound, but may be explained if EDRF is a compound that contains nitric oxide within its structure but is a much more potent vasodilator than nitric oxide. Such a molecule could be one of several nitrosothiols which may yield nitric oxide after a one-electron reduction. The present experiments were carried out to test the possibility that the biological activities of the endothelium-derived relaxing factor might more closely resemble those of one of these compounds, S-nitrosocysteine, than nitric oxide. Nitric oxide release from cultured bovine aortic endothelial cells was detected by chemiluminescence and bioassay experiments compared the vasodilator potencies of nitric oxide, S-nitrosocysteine, and EDRF. The results suggest that EDRF is much more likely to be a nitrosylated compound such as a nitrosothiol than authentic nitric oxide.  相似文献   

3.
4.
J L Guan  D Shalloway 《Nature》1992,358(6388):690-692
Increasing evidence indicates that the integrin family of cell adhesion receptors can transduce biochemical signals from the extracellular matrix to the cell interior to modulate cell growth and differentiation. We have shown that integrin/ligand interactions can trigger tyrosine phosphorylation of a protein of M(r) 120,000 (pp120), so it is possible that signal transduction by integrins might involve activation of intracellular protein tyrosine kinases as an early event in cell binding to the extracellular matrix. Here we report that pp120 is identical to the focal adhesion-associated protein tyrosine kinase pp125FAK (refs 3, 4). We show that tyrosine phosphorylation of this protein is modulated both by cell adhesion and transformation by pp60v-src, and that these changes in phosphorylation are correlated with increased pp125FAK tyrosine kinase activity. A model is proposed to relate these findings to the molecular basis of anchorage-independent growth of transformed cells.  相似文献   

5.
Nitric oxide (NO) is an important biological messenger in the regulation of tissue homeostasis. It exhibits a wide range of effects during physiological and pathophysiological processes. Typical beneficial properties of NO include the regulation of vascular tone,the protection of cells against apoptosis, the modulation of immune responses, and the killing of microbial pathogens. On the other hand,NO may cause severe vasodilation and myocardial depression during bacterial sepsis or act as a cytotoxic and tissue-damaging molecule in autoimmune diseases. Mitogen-activated protein kinase (MAPK) is a family of serine/threonine protein kinases that are widely distributed in mammalian cells. MAPK cascade plays pivotal roles in gene expression, cell proliferation, differentiation, neuronal survival and programmed cell death under a variety of experimental conditions. MAPKs transduce the signal for the cellular response to extracellular stresses or stimuli. The relation between them, however, has never been reviewed. Based on our researches and other reports in the field, we review their reciprocal regulatory functions.  相似文献   

6.
Localization of nitric oxide synthase indicating a neural role for nitric oxide.   总被引:142,自引:0,他引:142  
D S Bredt  P M Hwang  S H Snyder 《Nature》1990,347(6295):768-770
Nitric oxide (NO), apparently identical to endothelium-derived relaxing factor in blood vessels, is also formed by cytotoxic macrophages, in adrenal gland and in brain tissue, where it mediates the stimulation by glutamate of cyclic GMP formation in the cerebellum. Stimulation of intestinal or anococcygeal nerves liberates NO, and the resultant muscle relaxation is blocked by arginine derivatives that inhibit NO synthesis. It is, however, unclear whether in brain or intestine, NO released following nerve stimulation is formed in neurons, glia, fibroblasts, muscle or blood cells, all of which occur in proximity to neurons and so could account for effects of nerve stimulation on cGMP and muscle tone. We have now localized NO synthase protein immunohistochemically in the rat using antisera to the purified enzyme. We demonstrate NO synthase in the brain to be exclusively associated with discrete neuronal populations. NO synthase is also concentrated in the neural innervation of the posterior pituitary, in autonomic nerve fibres in the retina, in cell bodies and nerve fibres in the myenteric plexus of the intestine, in adrenal medulla, and in vascular endothelial cells. These prominent neural localizations provide the first conclusive evidence for a strong association of NO with neurons.  相似文献   

7.
Subcellular localization of nitric oxide (NO) synthases with effector molecules is an important regulatory mechanism for NO signalling. In the heart, NO inhibits L-type Ca2+ channels but stimulates sarcoplasmic reticulum (SR) Ca2+ release, leading to variable effects on myocardial contractility. Here we show that spatial confinement of specific NO synthase isoforms regulates this process. Endothelial NO synthase (NOS3) localizes to caveolae, where compartmentalization with beta-adrenergic receptors and L-type Ca2+ channels allows NO to inhibit beta-adrenergic-induced inotropy. Neuronal NO synthase (NOS1), however, is targeted to cardiac SR. NO stimulation of SR Ca2+ release via the ryanodine receptor (RyR) in vitro, suggests that NOS1 has an opposite, facilitative effect on contractility. We demonstrate that NOS1-deficient mice have suppressed inotropic response, whereas NOS3-deficient mice have enhanced contractility, owing to corresponding changes in SR Ca2+ release. Both NOS1-/- and NOS3-/- mice develop age-related hypertrophy, although only NOS3-/- mice are hypertensive. NOS1/3-/- double knockout mice have suppressed beta-adrenergic responses and an additive phenotype of marked ventricular remodelling. Thus, NOS1 and NOS3 mediate independent, and in some cases opposite, effects on cardiac structure and function.  相似文献   

8.
Akt is more than just a Bad kinase.   总被引:19,自引:0,他引:19  
A Khwaja 《Nature》1999,401(6748):33-34
  相似文献   

9.
Pulmonary nitric oxide in mountain dwellers.   总被引:27,自引:0,他引:27  
  相似文献   

10.
Nitric oxide (NO) produced by the endothelial NO synthase (eNOS) is a fundamental determinant of cardiovascular homesotasis: it regulates systemic blood pressure, vascular remodelling and angiogenesis. Physiologically, the most important stimulus for the continuous formation of NO is the viscous drag (shear stress) generated by the streaming blood on the endothelial layer. Although shear-stress-mediated phosphorylation of eNOS is thought to regulate enzyme activity, the mechanism of activation of eNOS is not yet known. Here we demonstrate that the serine/threonine protein kinase Akt/PKB mediates the activation of eNOS, leading to increased NO production. Inhibition of the phosphatidylinositol-3-OH kinase/Akt pathway or mutation of the Akt site on eNOS protein (at serine 1177) attenuates the serine phosphorylation and prevents the activation of eNOS. Mimicking the phosphorylation of Ser 1177 directly enhances enzyme activity and alters the sensitivity of the enzyme to Ca2+, rendering its activity maximal at sub-physiological concentrations of Ca2+. Thus, phosphorylation of eNOS by Akt represents a novel Ca2+-independent regulatory mechanism for activation of eNOS.  相似文献   

11.
12.
Inactivation of the sarcoplasmic reticulum calcium channel by protein kinase.   总被引:10,自引:0,他引:10  
J Wang  P M Best 《Nature》1992,359(6397):739-741
The ryanodine receptor protein of skeletal muscle sarcoplasmic reticulum (SR) membranes is a calcium ion channel which allows movement of calcium from the SR lumen into the cytoplasm during muscle activation. Gating of this channel is modulated by a number of physiologically important substances including calcium. Interestingly, calcium has both activating and inactivating effects which are concentration- and tissue-specific. In skeletal muscle, calcium-dependent inactivation of calcium release occurs at concentrations reached physiologically, suggesting that calcium may modulate the release process by a negative feedback mechanism. To determine the cellular mechanism responsible for calcium-dependent inactivation, we have investigated the ability of protein phosphorylation to affect single channel gating behaviour using the patch clamp technique. Here we demonstrate that the ryanodine receptor protein/calcium release channel of skeletal muscle SR is inactivated under conditions permissive for protein phosphorylation. This inactivation is reversed by the application of phosphatase and prevented by a peptide inhibitor specific for calcium/calmodulin-dependent protein kinase II. The results provide evidence for an endogenous protein kinase which is closely associated with the ryanodine receptor protein and regulates channel gating.  相似文献   

13.
F Verde  J C Labbé  M Dorée  E Karsenti 《Nature》1990,343(6255):233-238
Microtubules are involved in the transport of vesicles in interphase and of the chromosomes during mitosis. Their arrangement and orientation in the cell are therefore of prime importance and specific patterns are believed to be generated by modulations of the intrinsic dynamic instability of microtubules. Here it is shown that the interphase-metaphase transition of microtubule arrays is under the control of the cdc2 kinase that precisely regulates the dynamics and steady-state length of microtubules.  相似文献   

14.
15.
R M Palmer  A G Ferrige  S Moncada 《Nature》1987,327(6122):524-526
Endothelium-derived relaxing factor (EDRF) is a labile humoral agent which mediates the action of some vasodilators. Nitrovasodilators, which may act by releasing nitric oxide (NO), mimic the effect of EDRF and it has recently been suggested by Furchgott that EDRF may be NO. We have examined this suggestion by studying the release of EDRF and NO from endothelial cells in culture. No was determined as the chemiluminescent product of its reaction with ozone. The biological activity of EDRF and of NO was measured by bioassay. The relaxation of the bioassay tissues induced by EDRF was indistinguishable from that induced by NO. Both substances were equally unstable. Bradykinin caused concentration-dependent release of NO from the cells in amounts sufficient to account for the biological activity of EDRF. The relaxations induced by EDRF and NO were inhibited by haemoglobin and enhanced by superoxide dismutase to a similar degree. Thus NO released from endothelial cells is indistinguishable from EDRF in terms of biological activity, stability, and susceptibility to an inhibitor and to a potentiator. We suggest that EDRF and NO are identical.  相似文献   

16.
Export by red blood cells of nitric oxide bioactivity   总被引:12,自引:0,他引:12  
Pawloski JR  Hess DT  Stamler JS 《Nature》2001,409(6820):622-626
Previous studies support a model in which the physiological O2 gradient is transduced by haemoglobin into the coordinate release from red blood cells of O2 and nitric oxide (NO)-derived vasoactivity to optimize oxygen delivery in the arterial periphery. But whereas both O2 and NO diffuse into red blood cells, only O2 can diffuse out. Thus, for the dilation of blood vessels by red blood cells, there must be a mechanism to export NO-related vasoactivity, and current models of NO-mediated intercellular communication should be revised. Here we show that in human erythrocytes haemoglobin-derived S-nitrosothiol (SNO), generated from imported NO, is associated predominantly with the red blood cell membrane, and principally with cysteine residues in the haemoglobin-binding cytoplasmic domain of the anion exchanger AE1. Interaction with AE1 promotes the deoxygenated structure in SNO-haemoglobin, which subserves NO group transfer to the membrane. Furthermore, we show that vasodilatory activity is released from this membrane precinct by deoxygenation. Thus, the oxygen-regulated cellular mechanism that couples the synthesis and export of haemoglobin-derived NO bioactivity operates, at least in part, through formation of AE1-SNO at the membrane-cytosol interface.  相似文献   

17.
Regulation of carbamoyl phosphate synthetase by MAP kinase   总被引:9,自引:0,他引:9  
The de novo synthesis of pyrimidine nucleotides is required for mammalian cells to proliferate. The rate-limiting step in this pathway is catalysed by carbamoyl phosphate synthetase (CPS II), part of the multifunctional enzyme CAD. Here we describe the regulation of CAD by the mitogen-activated protein (MAP) kinase cascade. When phosphorylated by MAP kinase in vitro or activated by epidermal growth factor in vivo, CAD lost its feedback inhibition (which is dependent on uridine triphosphate) and became more sensitive to activation (which depends upon phosphoribosyl pyrophosphate). Both these allosteric regulatory changes favour biosynthesis of pyrimidines for growth. They were accompanied by increased epidermal growth factor-dependent phosphorylation of CAD in vivo and were prevented by inhibition of MAP kinase. Mutation of a consensus MAP kinase phosphorylation site abolished the changes in CAD allosteric regulation that were stimulated by growth factors. Finally, consistent with an effect of MAP kinase signalling on CPS II activity, epidermal growth factor increased cellular uridine triphosphate and this increase was reversed by inhibition of MAP kinase. Hence these studies may indicate a direct link between activation of the MAP kinase cascade and de novo biosynthesis of pyrimidine nucleotides.  相似文献   

18.
M E Fortini  M A Simon  G M Rubin 《Nature》1992,355(6360):559-561
Cell-fate specification of R7 photoreceptors in the developing Drosophila eye depends on an inductive signal from neighbouring R8 cells. Mutations in three genes, sevenless (sev), bride-of-sevenless (boss) and seven-in-absentia (sina) cause the R7 precursor to become a non-neural cone cell. The sev gene encodes a receptor protein tyrosine kinase (Sev) localized on the R7 surface, activated by a boss-encoded ligand presented by R8. The sina gene encodes a nuclear factor required in R7. Reduction in the dosage of the Ras1 gene impairs Sev-mediated signalling, suggesting that activation of Ras1 may be an important consequence of Sev activation. We report here that Ras1 activation may account for all of the signalling action of Sev; an activated Ras1Va112 protein rescues the normal R7 precursor from transformation into a cone cell in sev and boss null mutants and induces the formation of supernumerary R7 cells. Similar activation of the Drosophila Ras2 protein does not produce these effects, demonstrating Ras protein specificity.  相似文献   

19.
Leptin is a hormone secreted by adipocytes that plays a pivotal role in regulating food intake, energy expenditure and neuroendocrine function. Leptin stimulates the oxidation of fatty acids and the uptake of glucose, and prevents the accumulation of lipids in nonadipose tissues, which can lead to functional impairments known as "lipotoxicity". The signalling pathways that mediate the metabolic effects of leptin remain undefined. The 5'-AMP-activated protein kinase (AMPK) potently stimulates fatty-acid oxidation in muscle by inhibiting the activity of acetyl coenzyme A carboxylase (ACC). AMPK is a heterotrimeric enzyme that is conserved from yeast to humans and functions as a 'fuel gauge' to monitor the status of cellular energy. Here we show that leptin selectively stimulates phosphorylation and activation of the alpha2 catalytic subunit of AMPK (alpha2 AMPK) in skeletal muscle, thus establishing a previously unknown signalling pathway for leptin. Early activation of AMPK occurs by leptin acting directly on muscle, whereas later activation depends on leptin functioning through the hypothalamic-sympathetic nervous system axis. In parallel with its activation of AMPK, leptin suppresses the activity of ACC, thereby stimulating the oxidation of fatty acids in muscle. Blocking AMPK activation inhibits the phosphorylation of ACC stimulated by leptin. Our data identify AMPK as a principal mediator of the effects of leptin on fatty-acid metabolism in muscle.  相似文献   

20.
Nitric oxide (NO) is a potent intercellular signal in mammals that mediates key aspects of blood pressure, hormone release, nerve transmission and the immune response of higher organisms. Proteins homologous to full-length mammalian nitric oxide synthases (NOSs) are found in lower multicellular organisms. Recently, genome sequencing has shown that some bacteria contain genes coding for truncated NOS proteins; this is consistent with reports of NOS-like activities in bacterial extracts. Biological functions for bacterial NOSs are unknown, but have been presumed to be analogous to their role in mammals. Here we describe a gene in the plant pathogen Streptomyces turgidiscabies that encodes a NOS homologue, and we reveal its role in nitrating a dipeptide phytotoxin required for plant pathogenicity. High similarity between bacterial NOSs indicates a general function in biosynthetic nitration; thus, bacterial NOSs constitute a new class of enzymes. Here we show that the primary function of Streptomyces NOS is radically different from that of mammalian NOS. Surprisingly, mammalian NO signalling and bacterial biosynthetic nitration share an evolutionary origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号