首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Ligand binding and conformational motions in myoglobin   总被引:2,自引:0,他引:2  
Ostermann A  Waschipky R  Parak FG  Nienhaus GU 《Nature》2000,404(6774):205-208
Myoglobin, a small globular haem protein that binds gaseous ligands such as O2, CO and NO reversibly at the haem iron, serves as a model for studying structural and dynamic aspects of protein reactions. Time-resolved spectroscopic measurements after photodissociation of the ligand revealed a complex ligand-binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. To observe the structural changes induced by ligand dissociation, we have carried out X-ray crystallographic investigations of carbon monoxy-myoglobin (MbCO mutant L29W) crystals illuminated below and above 180 K, complemented by time-resolved infrared spectroscopy of CO rebinding. Here we show that below 180 K photodissociated ligands migrate to specific sites within an internal cavity--the distal haem pocket--of an essentially immobilized, frozen protein, from where they subsequently rebind by thermally activated barrier crossing. Upon photodissociation above 180 K, ligands escape from the distal pocket, aided by protein fluctuations that transiently open exit channels. We recover most of the ligands in a cavity on the opposite side of the haem group.  相似文献   

6.
7.
Diversity peaks at intermediate productivity in a laboratory microcosm   总被引:22,自引:0,他引:22  
Kassen R  Buckling A  Bell G  Rainey PB 《Nature》2000,406(6795):508-512
The species diversity of natural communities is often strongly related to their productivity. The pattern of this relationship seems to vary: diversity is known to increase monotonically with productivity, to decrease monotonically with productivity, and to be unimodally related to productivity, with maximum diversity occurring at intermediate levels of productivity. The mechanism underlying these patterns remains obscure, although many possibilities have been suggested. Here we outline a simple mechanism--involving selection in a heterogeneous environment--to explain these patterns, and test it using laboratory cultures of the bacterium Pseudomonas fluorescens. We grew diverse cultures over a wide range of nutrient concentrations, and found a strongly unimodal relationship between diversity and productivity in heterogeneous, but not in homogeneous, environments. Our result provides experimental evidence that the unimodal relationship often observed in natural communities can be caused by selection for specialized types in a heterogeneous environment.  相似文献   

8.
A peptide model of a protein folding intermediate   总被引:21,自引:0,他引:21  
T G Oas  P S Kim 《Nature》1988,336(6194):42-48
It is difficult to determine the structures of protein folding intermediates because folding is a highly cooperative process. A disulphide-bonded peptide pair, designed to mimic the first crucial intermediate in the folding of bovine pancreatic trypsin inhibitor, contains secondary and tertiary structure similar to that found in the native protein. Peptide models like this circumvent the problem of cooperativity and permit characterization of structures of folding intermediates.  相似文献   

9.
Binding of cyclopropane to sperm whale myoglobin   总被引:3,自引:0,他引:3  
B P Schoenborn 《Nature》1967,214(5093):1120-1122
  相似文献   

10.
11.
Detection and characterization of a folding intermediate in barnase by NMR   总被引:17,自引:0,他引:17  
Protein engineering is being developed for mapping the energetics and pathway of protein folding. From kinetic studies on wild-type and mutant proteins, the sequence and energetics of formation of tertiary interactions of side chains can be mapped and the formation of secondary structure inferred. Here we cross-check and complement results from this approach by using a recently developed procedure that traps and characterizes secondary structure in intermediate states using 1H NMR. The refolding of barnase is shown to be a multiphasic process in which the secondary structure in alpha-helices and beta-sheets and some turns is formed more rapidly than is the overall folding.  相似文献   

12.
13.
The role of the distal histidine in myoglobin and haemoglobin   总被引:11,自引:0,他引:11  
The distal E7 histidine in vertebrate myoglobins and haemoglobins has been strongly conserved during evolution and is thought to be important in fine-tuning the ligand affinities of these proteins. A hydrogen bond between the N epsilon proton of the distal histidine and the second oxygen atom may stabilize O2 bound to the haem iron. The proximity of the imidazole side chain to the sixth coordination position, which is required for efficient hydrogen bonding, has been postulated to inhibit sterically the binding of CO and alkyl isocyanides. To test these ideas, engineered mutants of sperm whale myoglobin and the alpha- and beta-subunits of human haemoglobin were prepared in which E7 histidine was replaced by glycine. Removal of the distal imidazole in myoglobin and the alpha-subunits of intact, R-state haemoglobin caused significant changes in the affinity for oxygen, carbon monoxide and methyl isocyanide; in contrast, the His-E7 to Gly substitution produced little or no effect on the rates and extents of O2, CO and methyl isocyanide binding to beta-chains within R-state haemoglobin. In the beta-subunit the distal histidine seems to be less significant in regulating the binding of ligands to the haem iron in the high affinity quaternary conformation. Structural differences in the oxygen binding pockets shown by X-ray crystallographic studies account for the functional differences of these proteins.  相似文献   

14.
15.
Our aim was to improve techniques for drug development by facilitating the identification of small molecules that bind with high affinity to acceptor molecules (for example, cell-surface receptors, enzymes, antibodies) and so to mimic or block their interaction with the natural ligand. Previously such small molecules have been characterized individually on a serial basis. The systematic synthesis and screening of peptide libraries of defined structure represents a new approach. For relatively small libraries, predetermined sequence variations on solid-phase supports have been used, and large libraries have been produced using a bacteriophage vector into which random oligodeoxynucleotide sequences have been introduced, but these techniques have severe limitations. Here we investigate an alternative approach to synthesis and screening of peptide libraries. Our simple methodology greatly enhances the production and rapid evaluation of random libraries of millions of peptides so that acceptor-binding ligands of high affinity can be rapidly identified and sequenced, on the basis of a 'one-bead, one-peptide' approach.  相似文献   

16.
J H White  K Lusnak  S Fogel 《Nature》1985,315(6017):350-352
Post-meiotic segregation of alleles, which is seen, for example, in the 5:3 distribution of alleles in the products of a single meiosis in fungi, has been thought to be due to the non-repair of heteroduplex regions formed during genetic recombination. In current models of genetic recombination, heteroduplex DNA is formed either as the primary intermediate generated by two interacting non-sister chromatids or as a short region flanking a double-stranded gap. The frequency of post-meiotic segregation differs for different alleles, and this is presumed to reflect the varying efficiencies with which different types of mismatches in the heteroduplex are repaired. To gain some insight into this process, we have now determined the nucleotide sequences of various yeast alleles with different post-meiotic segregation frequencies and compared the mismatches predicted to occur in heteroduplexes of these alleles with wild-type DNA with those repaired with varying efficiency in bacterial systems. A striking correlation is observed, with the mismatches predicted for high post-meiotic segregation frequency alleles being similar to mismatches repaired with low efficiency in bacteria. These results support the view that postmeiotic segregation frequency reflects heteroduplex repair efficiency and the contention that meiotic gene conversion is the result of the successful repair of heteroduplex mismatches.  相似文献   

17.
Oldham ML  Khare D  Quiocho FA  Davidson AL  Chen J 《Nature》2007,450(7169):515-521
The maltose uptake system of Escherichia coli is a well-characterized member of the ATP-binding cassette transporter superfamily. Here we present the 2.8-A crystal structure of the intact maltose transporter in complex with the maltose-binding protein, maltose and ATP. This structure, stabilized by a mutation that prevents ATP hydrolysis, captures the ATP-binding cassette dimer in a closed, ATP-bound conformation. Maltose is occluded within a solvent-filled cavity at the interface of the two transmembrane subunits, about halfway into the lipid bilayer. The binding protein docks onto the entrance of the cavity in an open conformation and serves as a cap to ensure unidirectional translocation of the sugar molecule. These results provide direct evidence for a concerted mechanism of transport in which solute is transferred from the binding protein to the transmembrane subunits when the cassette dimer closes to hydrolyse ATP.  相似文献   

18.
A D Ellington  J W Szostak 《Nature》1992,355(6363):850-852
We have isolated a set of ligand-binding DNA sequences from a large pool of random sequence DNAs by selection and amplification in vitro, using similar methods to those described for the isolation of ligand-binding RNAs. The ligand-DNA interactions are both sequence- and ligand-specific, and are dependent on proper folding of the single-stranded DNA. Some ligands led to the isolation of more DNA sequences than RNA sequences, and vice versa. Analysis of individual sequences reveals that ligand binding is DNA-specific; RNAs of identical sequence could not interact with the same ligands. Ligand-binding DNAs might be more suitable than RNAs as potential pharmacological reagents because of the greater stability of DNA. The apparent primacy of RNA in the early evolution of life may have been due to its availability rather than to its functional superiority.  相似文献   

19.
Reese C  Heise F  Mayer A 《Nature》2005,436(7049):410-414
The question concerning whether all membranes fuse according to the same mechanism has yet to be answered satisfactorily. During fusion of model membranes or viruses, membranes dock, the outer membrane leaflets mix (termed hemifusion), and finally the fusion pore opens and the contents mix. Viral fusion proteins consist of a membrane-disturbing 'fusion peptide' and a helical bundle that pin the membranes together. Although SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes form helical bundles with similar topology, it is unknown whether SNARE-dependent fusion events on intracellular membranes proceed through a hemifusion state. Here we identify the first hemifusion state for SNARE-dependent fusion of native membranes, and place it into a sequence of molecular events: formation of helical bundles by SNAREs precedes hemifusion; further progression to pore opening requires additional peptides. Thus, SNARE-dependent fusion may proceed along the same pathway as viral fusion: both use a docking mechanism via helical bundles and additional peptides to destabilize the membrane and efficiently induce lipid mixing. Our results suggest that a common lipidic intermediate may underlie all fusion reactions of lipid bilayers.  相似文献   

20.
Religa TL  Markson JS  Mayor U  Freund SM  Fersht AR 《Nature》2005,437(7061):1053-1056
The most controversial area in protein folding concerns its earliest stages. Questions such as whether there are genuine folding intermediates, and whether the events at the earliest stages are just rearrangements of the denatured state or progress from populated transition states, remain unresolved. The problem is that there is a lack of experimental high-resolution structural information about early folding intermediates and denatured states under conditions that favour folding because competent states spontaneously fold rapidly. Here we have solved directly the solution structure of a true denatured state by nuclear magnetic resonance under conditions that would normally favour folding, and directly studied its equilibrium and kinetic behaviour. We engineered a mutant of Drosophila melanogaster Engrailed homeodomain that folds and unfolds reversibly just by changing ionic strength. At high ionic strength, the mutant L16A is an ultra-fast folding native protein, just like the wild-type protein; however, at physiological ionic strength it is denatured. The denatured state is a well-ordered folding intermediate, poised to fold by docking helices and breaking some non-native interactions. It unfolds relatively progressively with increasingly denaturing conditions, and so superficially resembles a denatured state with properties that vary with conditions. Such ill-defined unfolding is a common feature of early folding intermediate states and accounts for why there are so many controversies about intermediates versus compact denatured states in protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号